18.
閱讀下列材料并回答問題:
材料1:如果一個三角形的三邊長分別為a,b,c,記$p=\frac{a+b+c}{2}$,那么三角形的面積為$S=\sqrt{p(p-a)(p-b)(p-c)}$. ①
古希臘幾何學(xué)家海倫(Heron,約公元50年),在數(shù)學(xué)史上以解決幾何測量問題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式.
我國南宋數(shù)學(xué)家秦九韶(約1202--約1261),曾提出利用三角形的三邊求面積的秦九韶公式:$S=\sqrt{\frac{1}{4}[{{a^2}{b^2}-{{({\frac{{{a^2}+{b^2}-{c^2}}}{2}})}^2}}]}$. ②
下面我們對公式②進行變形:$\sqrt{\frac{1}{4}[{{a^2}{b^2}-{{({\frac{{{a^2}+{b^2}-{c^2}}}{2}})}^2}}]}=\sqrt{{{({\frac{1}{2}ab})}^2}-{{({\frac{{{a^2}+{b^2}-{c^2}}}{4}})}^2}}$=$\sqrt{({\frac{1}{2}ab+\frac{{{a^2}+{b^2}-{c^2}}}{4}})({\frac{1}{2}ab-\frac{{{a^2}+{b^2}-{c^2}}}{4}})}$=$\sqrt{\frac{{2ab+{a^2}+{b^2}-{c^2}}}{4}•\frac{{2ab-{a^2}-{b^2}+{c^2}}}{4}}$=$\sqrt{\frac{{{{(a+b)}^2}-{c^2}}}{4}•\frac{{{c^2}-{{(a-b)}^2}}}{4}}$=$\sqrt{\frac{a+b+c}{2}•\frac{a+b-c}{2}•\frac{a+c-b}{2}•\frac{b+c-a}{2}}$=$\sqrt{p(p-a)(p-b)(p-c)}$.
這說明海倫公式與秦九韶公式實質(zhì)上是同一公式,所以我們也稱①為海倫--秦九韶公式.
問題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內(nèi)切于△ABC,切點分別是D、E、F.
(1)求△ABC的面積;
(2)求⊙O的半徑.