【題目】如圖,拋物線經(jīng)過(guò),兩點(diǎn),與y軸交于點(diǎn)C,連接AB,AC,BC.

求拋物線的表達(dá)式;

求證:AB平分;

拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)M,使得是以AB為直角邊的直角三角形,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】拋物線的解析式為證明見(jiàn)解析;點(diǎn)M的坐標(biāo)為

【解析】

代入拋物線的解析式得到關(guān)于a、b的方程組,從而可求得a、b的值;

先求得AC的長(zhǎng),然后取,則,連接BD,接下來(lái),證明,然后依據(jù)SSS可證明,接下來(lái),依據(jù)全等三角形的性質(zhì)可得到

作拋物線的對(duì)稱(chēng)軸交x軸與點(diǎn)E,交BC與點(diǎn)F,作點(diǎn)A,作,分別交拋物線的對(duì)稱(chēng)軸與、M,依據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo)可得到,從而可得到,從而可得到FM的長(zhǎng),故此可得到點(diǎn)和點(diǎn)M的坐標(biāo).

代入得:,

解得:,,

拋物線的解析式為;

,,

,

,則

由兩點(diǎn)間的距離公式可知,

,,

,

,

中,,,

,

平分;

如圖所示:拋物線的對(duì)稱(chēng)軸交x軸與點(diǎn)E,交BC與點(diǎn)F.

拋物線的對(duì)稱(chēng)軸為,則

,,

,

,

,

,

同理:,

,

,

點(diǎn)M的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20179月,我國(guó)中小學(xué)生迎來(lái)了新版教育部統(tǒng)編義務(wù)教育語(yǔ)文教科書(shū),本次統(tǒng)編本教材最引人關(guān)注的變化之一是強(qiáng)調(diào)對(duì)傳統(tǒng)文化經(jīng)典著作的閱讀,某校對(duì)A《三國(guó)演義》、B《紅樓夢(mèng)》、C《西游記》、D《水滸》四大名著開(kāi)展最受歡迎的傳統(tǒng)文化經(jīng)典著作調(diào)查,隨機(jī)調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計(jì)圖:

(1)本次一共調(diào)查了   名學(xué)生;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)某班語(yǔ)文老師想從這四大名著中隨機(jī)選取兩部作為學(xué)生暑期必讀書(shū)籍,請(qǐng)用樹(shù)狀圖或列表的方法求恰好選中《三國(guó)演義》和《紅樓夢(mèng)》的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=12,點(diǎn)EBC的中點(diǎn),以CD為直徑作半圓CFD,點(diǎn)F為半圓的中點(diǎn),連接AF,EF,圖中陰影部分的面積是(  )

A. 18+36π B. 24+18π C. 18+18π D. 12+18π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)的圖象與直線y2x+1交于點(diǎn)A1,m.

1)求k、m的值;

2)已知點(diǎn)Pn,0)(n≥1),過(guò)點(diǎn)P作平行于y軸的直線,交直線y2x+1于點(diǎn)B,交函數(shù)的圖象于點(diǎn)C.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).

①當(dāng)n3時(shí),求線段AB上的整點(diǎn)個(gè)數(shù);

②若的圖象在點(diǎn)A、C之間的部分與線段AB、BC所圍成的區(qū)域內(nèi)(包括邊界)恰有5個(gè)整點(diǎn),直接寫(xiě)出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=4,扇形BEF的半徑為4,圓心角為60°,則圖中陰影部分的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,點(diǎn)OBC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過(guò)點(diǎn)DBC的平行線與AC的延長(zhǎng)線相交于點(diǎn)P.

(1)求證:PD是⊙O的切線;

(2)求證:△ABD∽△DCP;

(3)當(dāng)AB=5cm,AC=12cm時(shí),求線段PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,以AC為直徑做⊙OBC于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長(zhǎng)線于點(diǎn)F

1)求證:FEAB;

2)填空:當(dāng)EF4時(shí),則DE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MAN60°,若△ABC的頂點(diǎn)B在射線AM上,且AB2,點(diǎn)C在射線AN上運(yùn)動(dòng),當(dāng)△ABC是銳角三角形時(shí),BC的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以正方形ABCD的邊AD作等邊ADE,則∠BEC的度數(shù)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案