【題目】如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),DP=1,AD=2,∠APB=90°.將△ADP沿AP翻折得到△AD′P,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)B作BN∥MP交DC于點(diǎn)N.
(1)求線段PC之長(zhǎng);
(2)求線段PN之長(zhǎng);
(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F.求線段EF之長(zhǎng).
【答案】(1) 4;(2) 2.5;(3).
【解析】
(1)證明△ADP∽△PCB,根據(jù)相似三角形對(duì)應(yīng)邊成比例即可得出結(jié)論;
(2)先證四邊形PMBN是菱形,設(shè)菱形邊長(zhǎng)為x,由折疊的性質(zhì)和勾股定理即可得出結(jié)論;
(3)在Rt△ABC中,由勾股定理求出AC.由于CP∥AB,從而可證△PCF∽△BAF,△PCE∽△MAE,得到,從而可求出EF=AF﹣AEACAC,代入即可得出結(jié)論.
(1)∵ABCD是矩形,∴AD=BC,∠D=∠C=90°,∴∠DPA+∠DAP=90°.
∵∠APB=90°,∴∠DPA+∠CPB=90°,∴∠DAP=∠CPB,∴△ADP∽△PCB,∴.
∵AD=CB=2,∴,∴PC=4;
(2)∵DP∥AB,∴∠DPA=∠PAM,由題意可知:∠DPA=∠APM,∴∠PAM=∠APM.
∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,∴AM=PM,PM=MB,∴PM=MB.
∵BN∥MP,PN∥MB,∴四邊形PMBN是平行四邊形,∴四邊形PMBN是菱形.
設(shè)菱形邊長(zhǎng)為x,則PN=PM=MB=AM=x.
由折疊可知:PD'=PD=1,AD'=AD=2,∴D'M=x-1.
在Rt△AD'M中,∵,∴,解得:x=2.5,∴PN=2.5;
(3)∵PC=4,PN=2.5,∴NC=PC-PN=1.5.在Rt△ABC中,AC=.
∵CP∥AB,∴△PCF∽△BAF,∴,∴,∴AF=AC.又易證:△PCE∽△MAE,∴,∴,∴AE=AC,∴EF=AF﹣AEACAC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知G是直角三角形ABC的內(nèi)心,∠C=90°,AC=6,BC=8,則線段CG的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時(shí)間到B處.在B處小亮觀測(cè)到媽媽所在的P處在北偏西37°的方向上,這時(shí)小亮與媽媽相距多少米(精確到1米)?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,沿EF將矩形折疊,使A、C重合,AC與EF交于點(diǎn)H.
(1)求證:△ABE≌△AGF;
(2)若AB=6,BC=8,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,∠ABC=45°,OC∥AD,AD交BC的延長(zhǎng)線于D,AB交OC于E.
(1)求證:AD是⊙O的切線;
(2)若⊙O的直徑為6,線段BC=2,求∠BAC的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了貫徹“減負(fù)增效”精神,掌握九年級(jí)600名學(xué)生每天的自主學(xué)習(xí)情況,某校學(xué)生會(huì)隨機(jī)抽查了九年級(jí)的部分學(xué)生,并調(diào)查他們每天自主學(xué)習(xí)的時(shí)間.根據(jù)調(diào)查結(jié)果,制作了兩幅不完整的統(tǒng)計(jì)圖(圖1,圖2),請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生人數(shù)是 人;
(2)圖2中α是 度,并將圖1條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)估算該校九年級(jí)學(xué)生自主學(xué)習(xí)時(shí)間不少于1.5小時(shí)有 人;
(4)老師想從學(xué)習(xí)效果較好的4位同學(xué)(分別記為A、B、C、D,其中A為小亮)隨機(jī)選擇兩位進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)交流,用列表法或樹(shù)狀圖的方法求出選中小亮A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過(guò)A、C兩點(diǎn).
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E
①過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫(xiě)出相應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CA=CB,AB=10,0°<∠C<60°,AF⊥BC于點(diǎn)F,在FC上截取FD=FB,點(diǎn)E是AC上一點(diǎn),連接DA、DE,且∠ADE=∠B.
(1)求證:ED=EC;
(2)若∠C=30°,求BD長(zhǎng);
(3)在(2)的條件下,將圖中△DEC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)得到△DE′C′,請(qǐng)問(wèn)在旋轉(zhuǎn)的過(guò)程中,以點(diǎn)C、E、C′、E′為頂點(diǎn)的四邊形可以構(gòu)成平行四邊形嗎?若可以,請(qǐng)求出該平行四邊形的面積,若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△中,,為斜邊上的中點(diǎn),連接,以為直徑作⊙,分別與、交于點(diǎn)、.過(guò)點(diǎn)作⊥,垂足為點(diǎn).
(1)求證:為⊙的切線;
(2)連接,若,,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com