精英家教網 > 初中數學 > 題目詳情

已知直角坐標系中有A(1,4),B(2,3),C(2,-1),D(-1,1)四點,則經過A,C兩點的直線L1與經過B,D兩點的直線L2的交點可以看做是方程組________的解.


分析:可用待定系數法求出直線L1與直線L2的解析式,由于函數圖象交點坐標為兩函數解析式組成的方程組的解,因此所求的方程組即為聯立直線L1與L2的解析式所得的方程組.
解答:設直線L1的解析式為y=kx+b,根據題意,得:解得:;
則L1的函數解析式是y=-5x+9;同理可以求出直線L2的解析式是y=x+;
則直線L1與直線L2的交點可以看做是方程組的解.
點評:在同一平面直角坐標系中,兩個一次函數圖象的交點坐標就是相應的二元一次方程組的解.反過來,以二元一次方程組的解為坐標的點,一定是相應的兩個一次函數的圖象的交點.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知直角坐標系中有一點p,并且p點的橫坐標是縱坐標的2倍,請寫出兩個過P點的反比例函數的表達式.(任寫兩個正確的即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

已知直角坐標系中有A(1,4),B(2,3),C(2,-1),D(-1,1)四點,則經過A,C兩點的直線L1與經過B,D兩點的直線L2的交點可以看做是方程組
的解.

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(29):2.8 二次函數的應用(解析版) 題型:解答題

已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

科目:初中數學 來源:2011年福建省莆田市南門學校中考數學綜合測試卷(三)(解析版) 題型:解答題

已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

同步練習冊答案