精英家教網 > 初中數學 > 題目詳情
已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.
【答案】分析:(1)根據點A的坐標,易求得OA=5,若△AOB是等腰三角形,應分三種情況考慮:
①OA=OB=5,由于點B的位置不確定,因此要分B在x軸正、負半軸兩種情況求解,已知了OB的長,即可得到點B的坐標;
②OA=AB=5,此時點B只能在x軸負半軸上,那么點B的橫坐標應為點A橫坐標的2倍,可據此求得點B的坐標;
③AB=OB=5,此時點B只能在x軸負半軸上,可在x軸上截取AD=OA,通過構建相似三角形:△OBA∽△OAD,通過所得比例線段來求出OB的長,從而得到點B的坐標.
(2)任選一個(1)題所得的B點坐標,利用待定系數法求解即可.
(3)解此題時,雖然不同的拋物線有不同的解,但解法一致;分兩種情況:
①OA∥BP時,可分別過A、P作x軸的垂線,設垂足為C、E,易證得△AOC∽△PBE,根據所得比例線段,即可求得點P的坐標.而梯形ABPO的面積可化為△ABO、△PBO的面積和來求出.
②OP∥AB時,方法同上,過P作PF⊥x軸于F,然后通過相似三角形:△ABC∽△POF,來求出P點坐標,梯形面積求法同上.(當OA=AB時,兩種情況的點P正好關于拋物線對稱軸對稱,可據此直接求出P點坐標,避免重復計算.)
解答:解:作AC⊥x軸,由已知得OC=4,AC=3,OA==5.
(1)當OA=OB=5時,
如果點B在x軸的負半軸上,如圖(1),點B的坐標為(-5,0);
如果點B在x軸的正半軸上,如圖(2),點B的坐標為(5,0);

當OA=AB時,點B在x軸的負半軸上,如圖(3),BC=OC,則OB=8,點B的坐標為(-8,0);
當AB=OB時,點B在x軸的負半軸上,如圖(4),在x軸上取點D,使AD=OA,可知OD=8.
由∠AOB=∠OAB=∠ODA,可知△AOB∽△ODA,
,
解得OB=,
點B的坐標為(-,0).


(2)當AB=OA時,拋物線過O(0,0),A(-4,3),B(-8,0)三點,
設拋物線的函數表達式為y=ax2+bx,
可得方程組,
解得a=,
;
當OA=OB時,同理得

(3)當OA=AB時,若BP∥OA,如圖(5),作PE⊥x軸,
則∠AOC=∠PBE,∠ACO=∠PEB=90°,
△AOC∽△PBE,
設BE=4m,PE=3m,則點P的坐標為(4m-8,-3m),
代入,
解得m=3;
則點P的坐標為(4,-9),
S梯形ABPO=S△ABO+S△BPO=48.
若OP∥AB,根據拋物線的對稱性可得點P的坐標為(-12,-9),
S梯形AOPB=S△ABO+S△BPO=48.


當OA=OB時,若BP∥OA,如圖(6),作PF⊥x軸,
則∠AOC=∠PBF,∠ACO=∠PFB=90°,
△AOC∽△PBF,
設BF=4m,PF=3m,則點P的坐標為(4m-5,-3m),
代入,
解得m=.則點P的坐標為(1,-),
S梯形ABPO=S△ABO+S△BPO=
若OP∥AB(圖略),作PF⊥x軸,
則∠ABC=∠POF,∠ACB=∠PFO=90°,
△ABC∽△POF,;
設點P的坐標為(-n,-3n),
代入,
解得n=9.
則點P的坐標為(-9,-27),S梯形AOPB=S△ABO+S△BPO=75.
點評:此題考查了等腰三角形的判定、二次函數解析式的確定、梯形的判定、圖形面積的求法等知識.同時還考查了分類討論的數學思想,一定要考慮全面,避免漏解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知直角坐標系內有一條直線和一條曲線,這條直線和x軸、y軸分別交于點A和點B,且OA=OB=1,這條曲線是函數y=
12x
的圖象在第一限內的一個分支,點P是這條曲線的任意一點,它的坐標是(a,b),由點P向x軸、y軸所作的垂線PM、PN(點M、N為垂足)分別與直線AB相交于點E和F.
(1)求△OEF的面積(a,b的代數式表示);
(2)△AOF與△BOE是否一定相似?如果一定相似,請證明;如果不一定相似,請說明理由;
(3)當點P在曲線上移動時,△OEF隨之變動,指出在△OEF的三個內角中,是否有大小始終保精英家教網持不變的角?若有,請求出其大小;若沒有,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知直角坐標系內有一條直線和一條曲線,這條直線和x軸、y軸分別交于點A和點B,且OA=OB=1.這條曲線是函數y=
1
2x
的圖象在第一象限的一個分支,點P是這條曲線上任意一點,它的坐標是(a、b),由點P向x軸、y軸作垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點E、F.
(1)點E坐標是
(a,1-a)
(a,1-a)
,點F坐標是
(1-b,b)
(1-b,b)
(用含a的代數式表示點E的坐標,用含b的代數式表示點F的坐標)
(2)求△OEF的面積(結果用含a、b的代數式表示);
(3)△AOF與△BOE是否相似?若相似,請證明;若不相似,請簡要說明理由.
(4)當點P在曲線y=
1
2x
上移動時,△OEF隨之變動,指出在△OEF的三個內角中,大小始終保持不變的那個角,并求出此角的大小,同時證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1997•上海)已知直角坐標系內有一條直線和一條曲線,這條直線和x軸、y軸分別交于點A和點B,且OA=OB=1,這條曲線是函數y=
12x
的圖象在第一象限內的一個分支,點P是這條曲線上任意一點,它的坐標是(a,b),由點P向x軸、y軸所作的垂線PM、PN(點M、N為垂足)分別與直線AB相交于點E和點F.
(1)設交點E和F都在線段AB上(如圖所示),分別求點E、點F的坐標(用a的代數式表示點E的坐標,用b的代數式表示點F的坐標,只須寫出答案,不要求寫出計算過程).
(2)求△OEF的面積(結果用a、b的代數式表示).
(3)△AOF與△BOE是否一定相似?如果一定相似,請予以證明;如果不一定相似或者一定不相似,請簡要說明理由.
(4)當點P在曲線上移動時,△OEF隨之變動,指出在△OEF的三個內角中,大小始終保持不變的那個角和它的大小,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:第6章《二次函數》中考題集(28):6.4 二次函數的應用(解析版) 題型:解答題

已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

同步練習冊答案