【題目】如圖,拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點(diǎn).
(1)求出拋物線的解析式;
(2)P是拋物線上一動(dòng)點(diǎn),過P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1) y=-x2+x-2;(2)點(diǎn)P為(2,1)或(5,-2)或(-3,-14)或(0,-2).
【解析】
(1)用待定系數(shù)法求出拋物線解析式;
(2)以A、P、M為頂點(diǎn)的三角形與△OAC相似,分兩種情況討論計(jì)算即可.
解:(1)∵該拋物線過點(diǎn)C(0,-2),
∴可設(shè)該拋物線的解析式為y=ax2+bx-2.
將A(4,0),B(1,0)代入,得,解得 ,
∴此拋物線的解析式為.
(2)存在,
設(shè)P點(diǎn)的橫坐標(biāo)為m,則P點(diǎn)的縱坐標(biāo)為-m2+m-2,
當(dāng)1<m<4時(shí),AM=4-m,PM=-m2+m-2.又∵∠COA=∠PMA=90°,
∴①當(dāng)==時(shí),△APM∽△ACO,即4-m=2(-m2+m-2).
解得m1=2,m2=4(舍去),∴P(2,1).
、诋(dāng)==時(shí),△APM∽△CAO,即2(4-m)=-m2+m-2.
解得m1=4,m2=5(均不合題意,舍去),∴當(dāng)1<m<4時(shí),P(2,1).
類似地可求出當(dāng)m>4時(shí),P(5,-2).
當(dāng)m<1時(shí),P(-3,-14)或P(0,-2),
綜上所述,符合條件的點(diǎn)P為(2,1)或(5,-2)或(-3,-14)或(0,-2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為1的的圓心A在拋物線y=(x-3)2-1上,AB//x軸交 于點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),當(dāng)點(diǎn)A在拋物線上運(yùn)動(dòng)時(shí),點(diǎn)B隨之運(yùn)動(dòng)得到的圖象的函數(shù)表達(dá)式為( )
A. y=(x-4)2-1 B. y=(x-3)2 C. y=(x-2)2-1 D. y=(x-3)2-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程
當(dāng)m取何值時(shí),這個(gè)方程有兩個(gè)不相等的實(shí)根?
若方程的兩根都是正數(shù),求m的取值范圍;
設(shè),是這個(gè)方程的兩個(gè)實(shí)數(shù)根,且,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,n)是一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0,m<0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)求一次函數(shù)解析式及m的值;
(2)根據(jù)圖象直接寫出在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)小于于反比例函數(shù)的值?
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,菱形ABCD中,對角線AC、BD相交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為1cm/s,EF⊥BD,且與AD,BD,CD分別交于點(diǎn)E,Q,F;當(dāng)直線EF停止運(yùn)動(dòng)時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).解答下列問題:
(1)當(dāng)t為何值時(shí),四邊形APFD是平行四邊形?
(2)設(shè)四邊形APFE的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使S四邊形APFE∶S菱形ABCD=17∶40?若存在,求出t的值,并求出此時(shí)P,E兩點(diǎn)間的距離;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)梯子AB斜靠在一豎直的墻AO上,測得AO=2 m.若梯子的頂端沿墻下滑0.5米,這時(shí)梯子的底端也恰好外移0.5米,則梯子的長度AB為( )
A. 2.5 m B. 3 m C. 1.5 m D. 3.5 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三個(gè)盒子中分別裝有除顏色外都相同的小球,甲盒中裝有兩個(gè)球,分別為一個(gè)紅球和一個(gè)綠球;乙盒中裝有三個(gè)球,分別為兩個(gè)綠球和一個(gè)紅球;丙盒中裝有兩個(gè)球,分別為一個(gè)紅球和一個(gè)綠球,從三個(gè)盒子中各隨機(jī)取出一個(gè)小球
(1)請畫樹狀圖,列舉所有可能出現(xiàn)的結(jié)果
(2)請直接寫出事件“取出至少一個(gè)紅球”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以△ABC的邊AB,AC為邊分別向外作正方形ABDE和正方形ACFG,連接EG,M為EG的中點(diǎn),連接AM.
(1)如圖1,∠BAC=90°,試判斷AM與BC關(guān)系?
(2)如圖2,∠BAC≠90°,圖1中的結(jié)論是否成立?若不成立,說明理由;若成立,給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,E是BC邊的中點(diǎn),點(diǎn)P在射線AD上,過P作PF⊥AE于F.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在射線AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使以P,F(xiàn),E為頂點(diǎn)的三角形也與△ABE相似?若存在,請求出x的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com