【題目】如圖,在等邊中,點分別在邊上,且, 與交于點.
(1)求證: ;
(2)求的度數(shù).
【答案】(1)證明見解析;(2)60°.
【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì),利用SAS證得△AEC≌△BDA,所以AD=CE;
(2)由(1)△AEC≌△BDA可得∠ACE=∠BAD,再根據(jù)三角形的外角與內(nèi)角的關(guān)系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.
試題解析:(1)∵△ABC是等邊三角形,
∴∠BAC=∠B=60°,AB=AC.
又∵AE=BD,
∴△AEC≌△BDA(SAS),
∴AD=CE;
(2)∵△AEC≌△BDA,
∴∠ACE=∠BAD,
∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分線交于E,D是AE延長線上一點,且∠BDC=120°.下列結(jié)論:①∠BEC=120°;②DB=DC;③DB=DE;④∠BDE=∠BCA.其中正確結(jié)論的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4,則S1+2S2+2S3+S4=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將7張如圖①所示的長為a、寬為b(a>b)的小長方形紙片,按如圖②所示的方式不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示,設(shè)左上角與右下角的陰影部分的面積之差為S,當(dāng)BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a、b應(yīng)滿足( )
A. a=b B. a=3b C. a=b D. a=4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了估計一個魚塘里魚的數(shù)量,第一次打撈上來20條,做上記號放入水中,第二次打撈上來25條,其中4條有記號,魚塘大約有魚__________條.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A在x軸的下方,y軸的右側(cè),到x軸的距離是4,到y軸的距離是3,則點A的坐標(biāo)為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩正方形彼此相鄰且內(nèi)接于半圓,若小正方形的面積為16cm2 , 則該半圓的半徑為( 。
A. (4+)cm B. 9cm C. 4cm D. 6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( 。
A.同位角相等
B.平行于同一直線的兩條直線互相平行
C.兩個銳角的和是銳角
D.和為180°的兩個角互為鄰補角
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com