【題目】在數(shù)軸上,點(diǎn)A對應(yīng)的數(shù)是-6,點(diǎn)B對應(yīng)的數(shù)是-2,點(diǎn)O對應(yīng)的數(shù)是0.動點(diǎn)P、Q分別從A、B同時出發(fā),以每秒3個單位,每秒1個單位的速度向右運(yùn)動。在運(yùn)動過程中,線段PQ的長度始終是另一線段長的整數(shù)倍,這條線段是(

A.PBB.OPC.OQD.QB

【答案】C

【解析】

設(shè)運(yùn)動時間為t秒,根據(jù)題意可知,,,然后分分類討論:①當(dāng)動點(diǎn)PQ在點(diǎn)O左側(cè)運(yùn)動時,②當(dāng)動點(diǎn)PQ運(yùn)動到點(diǎn)O右側(cè)時,利用各線段之間的和、差關(guān)系即可解答.

解:設(shè)運(yùn)動時間為t秒,

由題意可知:,,,

①當(dāng)動點(diǎn)PQ在點(diǎn)O左側(cè)運(yùn)動時,

,

②當(dāng)動點(diǎn)P、Q運(yùn)動到點(diǎn)O右側(cè)時,

,

,

綜上所述,在運(yùn)動過程中,線段PQ的長度始終是線段OQ的長的整數(shù)倍,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,P是AC上一點(diǎn),過P作PD⊥AB于點(diǎn)D,將△APD繞PD的中點(diǎn)旋轉(zhuǎn)180°得到△EPD.(設(shè)AP=x)

(1)若點(diǎn)E落在邊BC上,求AP的長;

(2)當(dāng)AP為何值時,△EDB為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形ABCD中,ABCD,B=90°,點(diǎn)PBC邊上,當(dāng)∠APD=90° 時,可知ABP∽△PCD.(不要求證明)

1)探究:如圖②,在四邊形ABCD中,點(diǎn)PBC邊上,當(dāng)∠B=C=APD時,求證:ABP∽△PCD

2)拓展:如圖③,在ABC中,點(diǎn)P是邊BC的中點(diǎn),點(diǎn)D、E分別在邊AB、AC上若∠B=C=DPE=45°,BC=8,CE=6,則DE的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在ABC中,BE、CF分別是ACAB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接ADAG

1)求證:AD=AG;

2ADAG的位置關(guān)系如何,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的邊ABx軸上,點(diǎn)C的坐標(biāo)為(﹣5,4),點(diǎn)Dy軸的正半軸上,經(jīng)過點(diǎn)A的直線yx1y軸交于點(diǎn)E,將直線AE沿y軸向上平移nn0)個單位長度后,得到直線l,直線l經(jīng)過點(diǎn)C時停止平移.

1)點(diǎn)A的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   ;

2)若直線ly軸于點(diǎn)F,連接CF,設(shè)△CDF的面積為S(這里規(guī)定:線段是面積為0的三角形),求Sn之間的函數(shù)關(guān)系式,并寫出n的取值范圍;

3)易知AEAD于點(diǎn)A,若直線l交折線ADDC于點(diǎn)P,當(dāng)△AEP為直角三角形時,請直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20筐白菜,以每筐30千克為標(biāo)準(zhǔn),超過或不足的分別用正、負(fù)來表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差(單位:千克)

-3

-2

-1.5

0

1

2.5

筐數(shù)

1

4

2

3

2

8

120筐白菜中,最重的一筐比最輕的一筐要重多少千克?

2)與標(biāo)準(zhǔn)質(zhì)量比較,20筐白菜總計超過或不足多少千克?

3)若白菜每千克售價2元,則出售這20筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1、2,已知四邊形ABCD為正方形,在射線AC上有一動點(diǎn)P,作PEAD(或延長線)于E,作PFDC(或延長線)于F,作射線BP交EF于G.

(1)在圖1中,設(shè)正方形ABCD的邊長為2,四邊形ABFE的面積為y,AP=x,求y關(guān)于x的函數(shù)表達(dá)式;

(2)結(jié)論:GBEF對圖1,圖2都是成立的,請任選一圖形給出證明;

(3)請根據(jù)圖2證明:FGC∽△PFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一方隊正沿箭頭所指的方向前進(jìn)

1A的位置為第三列第四行,表示為(3,4),那么B的位置是____________

A B C D

2B左側(cè)第二個人的位置是____________

A B C D

3)如果隊伍向東前進(jìn),那么A北側(cè)第二個人的位置是____________

A B C D

4表示的位置是____________

AA BB CC DD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為3,連接ACAE平分CAD,交BC的延長線于點(diǎn)E,FAAE,交CB延長線于點(diǎn)F,則EF的長為__________

查看答案和解析>>

同步練習(xí)冊答案