【題目】我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解:是正整數(shù),且),在的所有這種分解中,如果兩因數(shù)之差的絕對(duì)值最小,我們就稱的最佳分解,產(chǎn)規(guī)定:,例如:12可以分解成,,因?yàn)?/span>,所以12的最佳分解,所以.

1)求;

2)若正整數(shù)4的倍數(shù),我們稱正整數(shù)四季數(shù),如果一個(gè)兩位正整數(shù),為自然數(shù)),交換個(gè)位上的數(shù)字與十位上的數(shù)字得到的新兩位正整數(shù)減去原來(lái)的兩位正整數(shù)所得的差為四季數(shù),那么我們稱這個(gè)數(shù)有緣數(shù),求所有有緣數(shù)的最小值.

【答案】11;(2最小值為.

【解析】

1)根據(jù)題意求出,的值代入即可.

2)根據(jù)題意列出二元一次方程,解的所有可能性,求出最小值.

解:(1,

2)根據(jù)題意得:為正整數(shù))

,或

,

,

,

,

,

兩位正整數(shù)為 51,62,73,8495,91

,,,

的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=90°,點(diǎn)C、D分別在射線OAOB上,CE是∠ACD的平分線,CE的反向延長(zhǎng)線與∠CDO的平分線交于點(diǎn)F

1)當(dāng)∠OCD=50°(圖1),試求∠F

2)當(dāng)C、D在射線OAOB上任意移動(dòng)時(shí)(不與點(diǎn)O重合)(圖2),∠F的大小是否變化?若變化,請(qǐng)說(shuō)明理由;若不變化,求出∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°AC=6,BC=8,點(diǎn)D為邊CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過(guò)DDOAB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對(duì)稱,連接DB′AD

1)求證:DOB∽△ACB;

2)若AD平分∠CAB,求線段BD的長(zhǎng);

3)當(dāng)AB′D為等腰三角形時(shí),求線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某活動(dòng)小組為了估計(jì)裝有5個(gè)白球和若干個(gè)紅球每個(gè)球除顏色外都相同的袋中紅球接近多少個(gè),在不將袋中球倒出來(lái)的情況下分小組進(jìn)行摸球試驗(yàn),兩人一組,20組進(jìn)行摸球?qū)嶒?yàn)其中一位學(xué)生摸球,另一位學(xué)生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做400次試驗(yàn),匯總起來(lái)后,摸到紅球次數(shù)為6000

估計(jì)從袋中任意摸出一個(gè)球,恰好是紅球的概率是多少?

請(qǐng)你估計(jì)袋中紅球接近多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《山西省新能源汽車產(chǎn)業(yè)2018年行動(dòng)計(jì)劃》指出,2018年全省新能源汽車產(chǎn)能將達(dá)到30萬(wàn)輛,按照十三五規(guī)劃,到2020年,全省新能源汽車產(chǎn)能將達(dá)到41萬(wàn)輛,若設(shè)這兩年全省新能源汽車產(chǎn)能的平均增長(zhǎng)率為,則根據(jù)題意可列出方程是()

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A′B′C′是由ABC經(jīng)過(guò)平移得到的,它們各頂點(diǎn)在平面直角坐標(biāo)系中的坐標(biāo)如下表所示:

ABC

A(a,0)

B(3,0)

C(5,5)

A′B′C′

A′(4,2)

B′(7,b)

C′(c,7)

(1)觀察表中各對(duì)應(yīng)點(diǎn)坐標(biāo)的變化,并填空:a=________,b=________,c=________;

(2)在平面直角坐標(biāo)系中畫出ABC及平移后的A′B′C′;

(3)直接寫出A′B′C′的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC,BC=12,EF分別是AB、AC的中點(diǎn),動(dòng)點(diǎn)P在射線EF,BPCED,CBP的平分線交CEQ,當(dāng)CQ=CE時(shí),EP+BP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD、DEFG都是正方形連接AE、CG.

(1)求證AE=CG

(2)觀察圖形,猜想AE與CG之間的位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用x,y表示直角三角形的兩直角邊(xy),下列四個(gè)說(shuō)法:① x2+y249;② xy2;③ x+y9;④ 2xy+449;其中說(shuō)法正確的是(  )

A. ①②B. ①②④

C. ①②③D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案