如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.
求證:(1)△AEC≌△ABF;
     (2)EC⊥BF.
分析:(1)求出∠EAC=∠BAF,根據(jù)SAS推出兩三角形全等即可.
(2)根據(jù)全等得出∠ACE=∠AFB,求出∠AFB+∠AOF=90°,推出∠ACE+∠COM=90°,求出∠CMF=180°-90°=90°即可.
解答:證明:(1)∵AE⊥AB,AF⊥AC,
∴∠EAB=∠FAC=90°,
∴∠EAB+∠BAC=∠FAC+∠BAC,
∴∠EAC=∠BAF,
在△AEC和△ABF中
AE=AB
∠EAC=∠BAF
AC=AF

∴△AEC≌△ABF(SAS).

(2)∵△AEC≌△ABF,
∴∠ACE=∠AFB,
∵∠FAC=90°,
∴∠AFB+∠AOF=90°,
∴∠ACE+∠AOF=90°,
∵∠AOF=∠COM,
∴∠ACE+∠COM=90°,
∴∠CMF=180°-90°=90°,
∴EC⊥BF.
點評:本題考查了三角形的內(nèi)角和定理,全等三角形的性質(zhì)和判定的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應(yīng)邊相等,對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知AE為⊙O的直徑,AD為△ABC的BC邊上的高.
(1)求證:∠BAE=∠DAC;
(2)若AB=10,AD=6,CD=2
3
,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求證:EC=BF.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知AE=54,BE=45,F(xiàn)E=36,CE=30,CF=26.
(1)請證明:△AEB∽△FEC.
(2)試求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖所示,已知AE∥BC,∠B=∠C.
AE∥BC?∠1=
∠B
(兩直線平等,同位角相等),
∠2=
∠C
(兩直線平等,內(nèi)錯角相等)
∠B=∠C?∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜春模擬)如圖所示,已知AE平分∠BAC交CD于點D,且AB∥CD,∠C=100°,則∠EAC為( 。

查看答案和解析>>

同步練習(xí)冊答案