如圖,請(qǐng)以所給圖形為基本圖形設(shè)計(jì)出一個(gè)由平移所得到的圖案來(lái),并說(shuō)明你的設(shè)計(jì)意圖.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
(1)除了正方形外,寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是勾股四邊形的兩種圖形的名稱:
矩形、直角梯形
;
(2)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你畫(huà)出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB,并寫(xiě)出點(diǎn)M的坐標(biāo);
(3)如圖2,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于O點(diǎn),P是線段DE上任意一點(diǎn).求證:四邊形OBPE是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,是7×7的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(-4,2),B點(diǎn)坐標(biāo)為(-2,4).
(2)在第二象限內(nèi)格點(diǎn)上找一點(diǎn)C,使C與線段AB 組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),則C點(diǎn)坐標(biāo)是
 
;△ABC周長(zhǎng)是
 
.(結(jié)果保留根號(hào))
(3)畫(huà)出三角形ABC以O(shè)為位似中心,相似比為
12
的位似圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

三等分任意角是三大幾何作圖不能問(wèn)題之一,古希臘數(shù)學(xué)家阿基米德就設(shè)計(jì)出了一個(gè)巧妙的三等分角的方法:在直尺邊緣上添加一點(diǎn)P,命尺端為O(如圖①);設(shè)所要三等分的角是∠MCN,以C為圓心,OP為半徑作半圓交給定角的兩邊CM、CN于A、B兩點(diǎn);移動(dòng)直尺,使直尺上的O點(diǎn)在AC的延長(zhǎng)線上移動(dòng),P點(diǎn)在圓周上移動(dòng),當(dāng)直尺正好通過(guò)B點(diǎn)時(shí),連OPB,則有∠AOB=
13
∠MCN.這種方法由于在直尺上作了一個(gè)記號(hào),不符合尺規(guī)作圖中直尺只能用來(lái)連線的規(guī)定,因此還不能算是嚴(yán)格意義上的尺規(guī)作圖.
(1)動(dòng)手實(shí)踐操作,用以上方法三等分∠MCN,在圖②中畫(huà)出圖形并標(biāo)明相應(yīng)字母;
(2)請(qǐng)你就阿基米德的作圖方法給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解不等式:
x-2
2
+1≥x
,并將解集表示在數(shù)軸上.
(2)如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,請(qǐng)?jiān)谒o的網(wǎng)格中按下列要求畫(huà)出圖形.
1)從點(diǎn)A出發(fā)的一條線段AB,使它的另一個(gè)端點(diǎn)在格點(diǎn)(即小正方形的頂點(diǎn))上,且長(zhǎng)度為2
2
;
2)以(1)中的AB為邊,且另兩邊的長(zhǎng)為無(wú)理數(shù)的所有等腰三角形ABC;
3)以(1)中的AB為邊的任意兩個(gè)格點(diǎn)三角形,它們相似但不全等,并求出它們的面積比.

查看答案和解析>>

同步練習(xí)冊(cè)答案