【題目】如圖,已知在△ABC中,∠B與∠C的平分線交于點P.
(1)當∠A=112°時,求∠BPC的度數(shù);
(2)當∠A=α?xí)r,求∠BPC的度數(shù).
【答案】
(1)解:∵△ABC中,∠A=112°,
∴∠ABC+∠ACB=180°﹣∠A=180°﹣112°=68°,
∴BP,CP分別為∠ABC與∠ACP的平分線,
∴∠2+∠4= (∠ABC+∠ACB)= ×68°=34°,
∴∠P=180°﹣(∠2+∠4)=180°﹣34°=146°
(2)解:如圖,連接AP并延長至D,
∵∠ABC與∠ACB的角平分線相交于P,
∴∠1= ABC,∠3= ∠ACB,
∵∠BPD是△ABD的外角,
∴∠BPD=∠1+∠BAP,
同理可得∠CPD=∠3+∠CAP,
∴∠BPC=∠BPD+∠CPD=∠1+∠BAP+∠3+∠CAP= ABC+ ∠ACB+∠BAC= (∠ABC+∠ACB)+α= (180°﹣α)+α=90°+ α.
【解析】(1)先根據(jù)三角形內(nèi)角和定理,求出∠ABC+∠ACB的度數(shù),再由角平分線的定義得出∠2+∠4的度數(shù),最后由三角形內(nèi)角和定理,即可求出∠BPC的度數(shù);(2)先連接AP并延長至D,根據(jù)∠ABC與∠ACB的角平分線相交于P,求得∠1= ABC,∠3= ∠ACB,最后根據(jù)三角形的外角性質(zhì),求得∠BPC的度數(shù).
【考點精析】本題主要考查了三角形的內(nèi)角和外角和三角形的外角的相關(guān)知識點,需要掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用長為4cm,5cm,6cm的三條線段圍成一個三角形,該事件是( 。
A. 隨機事件 B. 必然事件 C. 不可能事件 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點A坐標為(2,0),以O(shè)A為邊在第一象限內(nèi)作等邊△OAB,點C為x軸上一動點,且在點A右側(cè),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,連接AD交BC于E.
(1)①直接回答:△OBC與△ABD全等嗎?
②試說明:無論點C如何移動,AD始終與OB平行;
(2)當點C運動到使AC2=AEAD時,如圖2,經(jīng)過O、B、C三點的拋物線為y1.試問:y1上是否存在動點P,使△BEP為直角三角形且BE為直角邊?若存在,求出點P坐標;若不存在,說明理由;
(3)在(2)的條件下,將y1沿x軸翻折得y2,設(shè)y1與y2組成的圖形為M,函數(shù)的圖象l與M有公共點.試寫出:l與M的公共點為3個時,m的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABO中,A,B兩點的坐標分別為(2,4),(7,2),C,G,F(xiàn),E分別為過A,B兩點所作的y軸、x軸的垂線與y軸、x軸的交點.求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司從2014年開始投入技術(shù)改進資金,經(jīng)技術(shù)改進后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:
(1)請你認真分析表中數(shù)據(jù),從一次函數(shù)和反比例函數(shù)中確定哪一個函數(shù)能表示其變化規(guī)律,給出理由,并求出其解析式;
(2)按照這種變化規(guī)律,若2017年已投入資金5萬元.
①預(yù)計生產(chǎn)成本每件比2016年降低多少萬元?
②若打算在2017年把每件產(chǎn)品成本降低到3.2萬元,則還需要投入技改資金多少萬元?(結(jié)果精確到0.01萬元).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com