【題目】如圖,已知直線(xiàn),過(guò)點(diǎn)作x軸的垂線(xiàn)交直線(xiàn)l于點(diǎn),以為邊作正方形,過(guò)點(diǎn)作x軸的垂線(xiàn)交直線(xiàn)l于點(diǎn),以為邊作正方形,…;則點(diǎn)的坐標(biāo)為______.
【答案】(2n,2n-1)
【解析】
先根據(jù)一次函數(shù)方程式求出B1點(diǎn)的坐標(biāo),再根據(jù)B1點(diǎn)的坐標(biāo)求出A2、C1的坐標(biāo),以此類(lèi)推總結(jié)規(guī)律便可求出點(diǎn)Cn的坐標(biāo).
解:直線(xiàn)y=x,點(diǎn)A1坐標(biāo)為(1,0),過(guò)點(diǎn)A1作x軸的垂線(xiàn)交直線(xiàn)于點(diǎn)B1,可知B1點(diǎn)的坐標(biāo)為(1,1);
∴以A1B1為邊作正方形A1B1C1A2,則A1B1=A1A2=1,
∴OA2=1+1=2,點(diǎn)A2的坐標(biāo)為(2,0),C1的坐標(biāo)為(2,1),
根據(jù)這種方法可求得B2的坐標(biāo)為(2,2),故點(diǎn)A3的坐標(biāo)為(4,0),C2的坐標(biāo)為(4,2),
以此類(lèi)推便可求出點(diǎn)Cn的坐標(biāo)為(2n,2n-1).
故答案為:(2n,2n-1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,E是AD上一點(diǎn),AE=AB,過(guò)點(diǎn)E作直線(xiàn)EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.
(1)如圖①,當(dāng)EF與AB相交時(shí),若∠EAB=60°,求證:EG=AG+BG;
(2)如圖②,當(dāng)EF與CD相交時(shí),且∠EAB=90°,請(qǐng)你寫(xiě)出線(xiàn)段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2-4x+c的圖象過(guò)點(diǎn)(-1, 0)和點(diǎn)(2,-9).
(1) 求該二次函數(shù)的解析式并寫(xiě)出其對(duì)稱(chēng)軸;
(2) 已知點(diǎn)P(2 , -2),連結(jié)OP , 在x軸上找一點(diǎn)M,使△OPM是等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo)(不寫(xiě)求解過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一項(xiàng)資助貧困生的公益活動(dòng)由你來(lái)主持,每位參與者需交贊助費(fèi)5元,活動(dòng)規(guī)則如下:如圖是兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),每個(gè)轉(zhuǎn)盤(pán)被分成6個(gè)相等的扇形,參與者轉(zhuǎn)動(dòng)這兩個(gè)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,指針各自指向一個(gè)數(shù)字,(若指針在分格線(xiàn)上,則重轉(zhuǎn)一次,直到指針指向某一數(shù)字為止),若指針最后所指的數(shù)字之和為12,則獲得一等獎(jiǎng),獎(jiǎng)金20元;數(shù)字之和為9,則獲得二等獎(jiǎng),獎(jiǎng)金10元;數(shù)字之和為7,則獲得三等獎(jiǎng),獎(jiǎng)金為5元;其余均不得獎(jiǎng);此次活動(dòng)所集到的贊助費(fèi)除支付獲獎(jiǎng)人員的獎(jiǎng)金外,其余全部用于資助貧困生的學(xué)習(xí)和生活;
(1)分別求出此次活動(dòng)中獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的概率;
(2)若此次活動(dòng)有2000人參加,活動(dòng)結(jié)束后至少有多少贊助費(fèi)用于資助貧困生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程的解為整數(shù),且不等式組無(wú)解,則這樣的非負(fù)整數(shù)a有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“天生霧、霧生露、露生耳”,銀耳是一種名貴食材,富含人體所需的多種氨基酸和微量元素,具有極高的藥用價(jià)值和食用價(jià)值.某銀耳培育基地的銀耳成熟了,需要采摘和烘焙.現(xiàn)準(zhǔn)備承包給甲和乙兩支專(zhuān)業(yè)采摘隊(duì),若承包給甲隊(duì),預(yù)計(jì)12天才能完成,為了減小銀耳因氣候變化等原因帶來(lái)的損失,現(xiàn)決定由甲、乙兩隊(duì)同時(shí)采摘,則可以提前8天完成任務(wù).
(1)若單獨(dú)由乙隊(duì)采摘,需要幾天才能完成?
(2)若本次一共采摘了300噸新鮮銀耳,急需在9天內(nèi)進(jìn)行烘焙技術(shù)處理.已知甲、乙兩隊(duì)每日烘焙量相當(dāng),甲隊(duì)單獨(dú)加工(烘焙)天完成100噸后另有任務(wù),剩下的200噸由乙隊(duì)加工(烘焙),乙隊(duì)剛好在規(guī)定的時(shí)間內(nèi)完工.若甲、乙兩隊(duì)從采摘到加工,每日工資分別是600元和1000元.問(wèn):銀耳培育基地此次需要支付給采摘隊(duì)的總工資是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題背景:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點(diǎn),且∠EAF=60°,請(qǐng)?zhí)骄繄D中線(xiàn)段BE,EF,FD之間的數(shù)量關(guān)系是什么?
小明探究此問(wèn)題的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連結(jié)AG.先證明△ABE≌△ADG,得AE=AG;再由條件可得∠EAF=∠GAF,證明△AEF≌△AGF,進(jìn)而可得線(xiàn)段BE,EF,FD之間的數(shù)量關(guān)系是 .
(2)拓展應(yīng)用:
如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F分別是BC,CD上的點(diǎn),且∠EAF=∠BAD.問(wèn)(1)中的線(xiàn)段BE,EF,FD之間的數(shù)量關(guān)系是否還成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是以O為圓心的半圓的直徑,半徑CO⊥AO,點(diǎn)M是上的動(dòng)點(diǎn),且不與點(diǎn)A、C、B重合,直線(xiàn)AM交直線(xiàn)OC于點(diǎn)D,連結(jié)OM與CM.
(1)若半圓的半徑為10.
①當(dāng)∠AOM=60°時(shí),求DM的長(zhǎng);
②當(dāng)AM=12時(shí),求DM的長(zhǎng).
(2)探究:在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),其中AB=4,∠AOC=120°,P為⊙O上的動(dòng)點(diǎn),連AP,取AP中點(diǎn)Q,連CQ,則線(xiàn)段CQ的最大值為( 。
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com