【題目】已知二次函數(shù)的部分圖象如圖所示,則關(guān)于的一元二次方程的解為 .
【答案】x1=-1或x2=3.
【解析】
試題分析:由二次函數(shù)y=-x2+2x+m的部分圖象可以得到拋物線的對(duì)稱軸和拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo),然后可以求出另一個(gè)交點(diǎn)坐標(biāo),再利用拋物線與x軸交點(diǎn)的橫坐標(biāo)與相應(yīng)的一元二次方程的根的關(guān)系即可得到關(guān)于x的一元二次方程-x2+2x+m=0的解.
試題解析:依題意得二次函數(shù)y=-x2+2x+m的對(duì)稱軸為x=1,與x軸的一個(gè)交點(diǎn)為(3,0),
∴拋物線與x軸的另一個(gè)交點(diǎn)橫坐標(biāo)為1-(3-1)=-1,
∴交點(diǎn)坐標(biāo)為(-1,0)
∴當(dāng)x=-1或x=3時(shí),函數(shù)值y=0,
即-x2+2x+m=0,
∴關(guān)于x的一元二次方程-x2+2x+m=0的解為x1=-1或x2=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定,若關(guān)于 x 的一元一次方程 ax=b 的解為 x=ba,則稱該方程的為差解方程,例如:3x=的解為x= 且=-3,則該方程3x=就是差解方程.
請(qǐng)根據(jù)以上規(guī)定解答下列問題
(1)若關(guān)于 x 的一元一次方程-5x=m+1 是差解方程,則 m=_____.
(2)若關(guān)于 x 的一元一次方程 2x=ab+3a+1 是差解方程,且它的解為 x=a,求代數(shù)式(ab+2)2019的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是由大小相同的小立方體搭乘的幾何體:
(1)請(qǐng)?jiān)谒o的方格中畫出該幾何體從上面看和從左面看的兩個(gè)圖形;
(2)現(xiàn)在你的手里還有一些相同的小立方塊,如果保持從上面來看和從左面看所得到的圖形不變,則在左邊的立體圖形中最多可以添加 個(gè)小立方塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知∠ABC=90°,∠CBD=30°,BP平分∠ABD,請(qǐng)補(bǔ)全圖形,并求∠ABP的度數(shù).
(2)在(1)的條件下,若∠ABC=α,∠CBD=β,直接寫出∠ABP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖7所示,點(diǎn)、、在軸上,且,分別過點(diǎn)、、作軸的平行線,與反比例函數(shù)的圖象分別交于點(diǎn)、、,分別過點(diǎn) 作軸的平行線,分別與軸交于點(diǎn) ,連接 ,那么圖中陰影部分的面積之和為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,并回答問題:
材料:數(shù)學(xué)課上,老師給出了如下問題.
如圖1,點(diǎn)A、B、C均在直線l上,AB = 8,BC = 2,M是AC的中點(diǎn),求AM的長.
小明的解答過程如下:
解:如圖2,
∵ AB = 8,BC = 2,
∴ AC = AB-BC = 8-2 = 6.
∵ M是AC的中點(diǎn),
∴ ( ① ).
小芳說:“小明的解答不完整”.
問題:(1)小明解答過程中的“①”為 ;
(2) 你同意小芳的說法嗎?如果同意,請(qǐng)將小明的解答過程補(bǔ)充完整;如果不同意,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且S△AOP=4SBOC,求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(,1)在射線OM上,點(diǎn)B(,3)在射線ON上,以AB為直角邊作Rt△ABA1,以BA1為直角邊作第二個(gè)Rt△BA1B1,以A1B1為直角邊作第三個(gè)Rt△A1B1A2,,依此規(guī)律,得到Rt△B2017A2018B2018,則點(diǎn)B2018的縱坐標(biāo)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過點(diǎn), . 為線段OA上一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)A不重合),過點(diǎn)M作垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N.
(1)求直線AB的解析式和拋物線的解析式;
(2)如果點(diǎn)P是MN的中點(diǎn),那么求此時(shí)點(diǎn)N的坐標(biāo);
(3)如果以B,P,N為頂點(diǎn)的三角形與相似,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com