如圖①,正方形ABCD中,點A、B的坐標分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當P點到達D點時,兩點同時停止運動,設(shè)運動的時間為t秒.

(1)當P點在邊AB上運動時,點Q的橫坐標x(長度單位)關(guān)于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標及點P運動速度;
(2)求正方形邊長及頂點C的坐標;
(3)如果點P、Q保持原速度不變,當點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請說明理由.

(1)(1,0),1;(2)10,(14,12);(3)t=或t=.

解析試題分析:(1)根據(jù)題意,易得Q(1,0),結(jié)合P、Q得運動方向、軌跡,分析可得答案;
(2)過點B作BF⊥y軸于點F,BE⊥x軸于點E,則BF=8,OF=BE=4,在Rt△AFB中,過點C作CG⊥x軸于點G,與FB的延長線交于點H,易得△ABF≌△BCH,進而可得C得坐標;
(3)過點P作PM⊥y軸于點M,PN⊥x軸于點N,易得△APM∽△ABF,根據(jù)相似三角形的性質(zhì),有,設(shè)△OPQ的面積為S,計算可得答案.
試題解析:(1)根據(jù)題意,易得Q(1,0),
點P運動速度每秒鐘1個單位長度.
(2)過點B作BF⊥y軸于點F,BE⊥x軸于點E,則BF=8,OF=BE=4.
∴AF=10-4=6.
在Rt△AFB中,
過點C作CG⊥x軸于點G,與FB的延長線交于點H.

∵∠ABC=90°=∠AFB=∠BHC
∴∠ABF+∠CBH=90°,∠ABF=∠BCH,∠FAB=∠CBH
∴△ABF≌△BCH.
∴BH=AF=6,CH=BF=8.
∴AB=
∴OG=FH=8+6=14,CG=8+4=12.
∴所求C點的坐標為(14,12).
(3)當t=或t=時,OP與PQ相等.
考點:相似三角形的判定與性質(zhì);二次函數(shù)的最值;全等三角形的判定與性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,點A、B坐標分別為(4,2)、(0,2),線段CD在于x軸上,CD=,點C從原點出發(fā)沿x軸正方向以每秒1個單位長度向右平移,點D隨著點C同時同速同方向運動,過點D作x軸的垂線交線段AB于點E、交OA于點G,連結(jié)CE交OA于點F.設(shè)運動時間為t,當E點到達A點時,停止所有運動.

(1)求線段CE的長;
(2)記S為RtΔCDE與ΔABO的重疊部分面積,試寫出S關(guān)于t的函數(shù)關(guān)系式及t的取值范圍;
(3)連結(jié)DF,
①當t取何值時,有?
②直接寫出ΔCDF的外接圓與OA相切時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC與△A′B′C′是位似圖形,且頂點都在格點上,每個小正方形的邊長都為1.

(1)在圖上標出位似中心D的位置,并寫出該位似中心D的坐標是               ;
(2)求△ABC與△A′B′C′的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知.如圖,點D、E分別是在AB,AC上,.求證:DE∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了測量校園水平地面上一棵樹的高度,數(shù)學(xué)興趣小組利用一根標桿、皮尺,設(shè)計如圖所示的測量方案.已知測量同學(xué)眼睛A、標桿頂端F、樹的頂端E在同一直線上,此同學(xué)眼睛距地面1.6米,標桿為3.1米,且BC=1米,CD=5米,請你根據(jù)所給出的數(shù)據(jù)求樹高ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,Rt△ABC中,CD是斜邊AB上的高.求證:AC2=AD·AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,□ABCD中,E為BC延長線上一點,AE交CD于點F,若,AD=2,∠B=45°,,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上,這個正方形零件的邊長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

【探究發(fā)現(xiàn)】
按圖中方式將大小不同的兩個正方形放在一起,分別求出陰影部分(⊿ACF)的面積。(單位:厘米,陰影部分的面積依次用S1、S2、S3表示)
1.S1=          cm2;     S2=          cm2;          S3=          cm2.
2.歸納總結(jié)你的發(fā)現(xiàn):

【推理反思】
按圖中方式將大小不同的兩個正方形放在一起,設(shè)小正方形的邊長是bcm,大正方形的邊長是acm,求:陰影部分(⊿ACF)的面積。

【應(yīng)用拓展】
1.按上圖方式將大小不同的兩個正方形放在一起,若大正方形的面積是80cm2,則圖中陰影三角形的面積是          cm2.
2.如圖(1),C是線段AB上任意一點,分別以AC、BC為邊在線段AB同側(cè)構(gòu)造等邊三角形⊿ACD和等邊三角形⊿CBE,若⊿CBE的邊長是1cm,則圖中陰影三角形的面積是                        cm2.
3.如圖(2),菱形ABCD和菱形ECGF的邊長分別為2和3,∠A=120°,則圖中陰影部分的面積是   

(1)                      (2)

查看答案和解析>>

同步練習(xí)冊答案