如圖,□ABCD中,E為BC延長線上一點,AE交CD于點F,若,AD=2,∠B=45°,,求CF的長.
.
解析試題分析:過點A作AM⊥BE于點M.首先利用已知條件求出BE=BM+ME=3,再利用平行四邊形的性質(zhì)求出CE=BE-BC=1,最后通過證明△ADF∽△ECF,有相似三角形的性質(zhì)即可求出CF的長.
試題解析:過點A作AM⊥BE于點M.
在Rt△ABM中,
∵∠B=45°,,
∴.∵,
∴.
∴EM=2.
∴BE=BM+ME=3.
∵四邊形ABCD是平行四邊形,
∴BC=AD=2,DC=AB=,AD∥BC.
∴CE=BE-BC=1.
∵AD∥BC,
∴∠1=∠E,∠D=∠2.
∴.
∴.
∵DC=,
∴.
考點: 1.相似三角形的判定與性質(zhì);2.平行四邊形的性質(zhì);3.解直角三角形.
科目:初中數(shù)學 來源: 題型:解答題
提出問題:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,(其中n為奇數(shù)),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關系呢?
探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點E、F是AD的3等分點,點G、H是BC的3等分點,連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關系呢?
如圖③,連接EH、BE、DH,
因為△EGH與△EBH高相等,底的比是1:2,
所以S△EGH=S△EBH
因為△EFH與△DEH高相等,底的比是1:2,
所以S△EFH=S△DEH
所以S△EGH+S△EFH=S△EBH +S△DEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因為△DBE與△ABD高相等,底的比是2:3,
所以S△DBE=S△ABD
因為△BDH與△BCD高相等,底的比是2:3,
所以S△BDH=S△BCD
所以S△DBE +S△BDH=S△ABD+S△BCD =(S△ABD+S△BCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(1)如圖④:四邊形ABCD中,點E、F是AD的5等分點中最中間2個,點G、H是BC的5等分點中最中間2個,連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關系呢
驗證你的猜想:
(2)問題解決:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,連接EG、FH,(其中n為奇數(shù))
那么S四邊形EFHG與S四邊形ABCD之間的關系為: (不必寫出求解過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖①,正方形ABCD中,點A、B的坐標分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A?B?C?D勻速運動,同時動點Q以相同速度在x軸正半軸上運動,當P點到達D點時,兩點同時停止運動,設運動的時間為t秒.
(1)當P點在邊AB上運動時,點Q的橫坐標x(長度單位)關于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標及點P運動速度;
(2)求正方形邊長及頂點C的坐標;
(3)如果點P、Q保持原速度不變,當點P沿A?B?C?D勻速運動時,OP與PQ能否相等?若能,求出所有符合條件的t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
在一個邊長為a(單位:cm)的正方形ABCD中.
(1)如圖1,如果N是AD中點,F(xiàn)為AB中點,連接DF,CN.
①求證:DF=CN;
②連接AC.求DH:HE: EF的值;
(2)如圖2,如果點E、M分別是線段AC、CD上的動點,假設點E從點A出發(fā),以cm/s速度沿AC向點C運動,同時點M從點C出發(fā),以1cm/s的速度沿CD向點D運動,運動時間為t(t>0),連結(jié)DE并延長交正方形的邊于點F,過點M作MN⊥DF于H,交AD于N.判斷命題“當點F是邊AB中點時,則點M是邊CD的三等分點”的真假,并說明理由. (4分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,某同學想測量旗桿的高度,他在某一時刻測得1米長的竹竿豎直放置時影長1.5米,在同一時刻測量旗桿的影長時,因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測得落在地面上的影長為21米,留在墻上的影高為2米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上).
(1)若△CEF與△ABC相似.
①當AC=BC=2時,AD的長為_________;
②當AC=3,BC=4時,AD的長為_________;
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm.點E,F(xiàn),G分別從A,B,C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s.當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關于直線EF的對稱圖形是△EB'F,設點E,F(xiàn),G運動的時間為t(單位:s).
(1)當t= s時,四邊形EBFB'為正方形;
(2)若以點E,B,F(xiàn)為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B'與點O重合?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com