【題目】如圖,在直角坐標(biāo)系中有為坐標(biāo)原點,,將此三角形繞原點順時針旋轉(zhuǎn),得到,二次函數(shù)的圖象剛好經(jīng)過三點.

(1)求二次函數(shù)的解析式及頂點的坐標(biāo);

(2)過定點的直線與二次函數(shù)圖象相交于兩點.

①若,求的值;

②證明:無論為何值,恒為直角三角形;

③當(dāng)直線繞著定點旋轉(zhuǎn)時,外接圓圓心在一條拋物線上運動,直接寫出該拋物線的表達式.

【答案】(1),;(2)①;②見解析;③

【解析】

1)求出點A、B、C的坐標(biāo)分別為(0,3)、(-1,0)、(3,0),即可求解;

2)①SPMN=PQ×x2-x1),則x2-x1=4,即可求解;②k1k2==-1,即可求解;③取MN的中點H,則點HPMN外接圓圓心,即可求解.

(1),則

即點的坐標(biāo)分別為、,

則二次函數(shù)表達式為:,

即:,解得:,

故函數(shù)表達式為:,

;

(2)將二次函數(shù)與直線的表達式聯(lián)立并整理得:

,

設(shè)點的坐標(biāo)為,

則:,

同理:,

,當(dāng)時,,即點,

,則,

解得:;

②點的坐標(biāo)為、、點,

則直線表達式中的值為:,直線表達式中的值為:,

為:

,

即:恒為直角三角形;

③取的中點,則點外接圓圓心,

設(shè)點坐標(biāo)為,

,

整理得:,

即:該拋物線的表達式為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分9分)如圖,點ORt△ABC斜邊AB上的一點,以OA為半徑的⊙OBC切于點D,與AC交于點E,連接AD

1)求證:AD平分∠BAC

2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形.的坐標(biāo)為,點的坐標(biāo)為,反比例函數(shù)的圖象經(jīng)過點,一次函數(shù)的圖象經(jīng)過點和點.

1)求反比例函數(shù)與一次函數(shù)的解析式;

2)寫出的解集;

3)點是反比例函數(shù)圖象上的一點,若的面積恰好等于正方形的面積,求點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,BC切⊙O于點C,AB交⊙O于點D,BC的中點為 E,連接DE

(1)求證:BE DE;

(2)連接EO交⊙O于點 F.填空:

①當(dāng)∠B __________時,以 DE,C,O為頂點的四邊形是正方形;

②當(dāng)∠B __________時,以 A,D,F,O為頂點的四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為1的正方形,軸正半軸的夾角為15°,點在拋物線的圖象上,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年四川資陽11分)在一個邊長為a(單位:cm)的正方形ABCD中,點E、M分別是線段AC,CD上的動點,連結(jié)DE并延長交正方形的邊于點F,過點M作MNDF于H,交AD于N.

(1)如圖1,當(dāng)點M與點C重合,求證:DF=MN;

(2)如圖2,假設(shè)點M從點C出發(fā),以1cm/s的速度沿CD向點D運動,點E同時從點A出發(fā),以cm/s速度沿AC向點C運動,運動時間為t(t>0);

判斷命題“當(dāng)點F是邊AB中點時,則點M是邊CD的三等分點”的真假,并說明理由.

連結(jié)FM、FN,MNF能否為等腰三角形?若能,請寫出a,t之間的關(guān)系;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,一輛小汽車車門寬AO1.2米,當(dāng)車門打開角度∠AOB40°時,車門是否會碰到墻?______(填“是”或“否”)請簡述你的理由_______(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進,廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計,目前廣東5G基站的數(shù)量約1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座。

1)計劃到2020年底,全省5G基站的數(shù)量是多少萬座?;

2)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形中,,繞點順時針旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于點

當(dāng)繞點旋轉(zhuǎn)到時(如圖1),易證

1)當(dāng)繞點旋轉(zhuǎn)到時(如圖2),線段之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.

2)當(dāng)繞點旋轉(zhuǎn)到如圖3的位置時,線段之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.

查看答案和解析>>

同步練習(xí)冊答案