【題目】(3分)如圖,在矩形ABCD中,BC=AB,∠ADC的平分線交邊BC于點(diǎn)E,AH⊥DE于點(diǎn)H,連接CH并延長(zhǎng)交邊AB于點(diǎn)F,連接AE交CF于點(diǎn)O.給出下列命題:
①∠AEB=∠AEH;②DH=EH;③HO=AE;④BC﹣BF=EH.
其中正確命題的序號(hào)是 (填上所有正確命題的序號(hào)).
【答案】①③.
【解析】
試題在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AD⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠AEB,故①正確;
設(shè)DH=1,則AH=DH=1,AD=DE=,∴HE=,∴HE=,故②錯(cuò)誤;
∵∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CH,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,故③正確;
∵AH=DH,CD=CE,在△AFH與△CHE中,∵∠AHF=∠HCE=22.5°,∠FAH=∠HEC=45°,AH=CE,∴△AFH≌△CHE,∴AF=EH,在△ABE與△AHE中,∵AB=AH,∠BEA=∠HEA,AE=AE,∴△ABE≌△AHE,∴BE=EH,∴BC﹣BF=(BE+CE)﹣(AB=AF)=(CD+EH)﹣(CD﹣EH)=2EH,故④錯(cuò)誤,故答案為:①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“宜居襄陽(yáng)”是我們的共同愿景,空氣質(zhì)量備受人們關(guān)注.我市某空氣質(zhì)量監(jiān)測(cè)站點(diǎn)檢測(cè)了該區(qū)域每天的空氣質(zhì)量情況,統(tǒng)計(jì)了2013年1月份至4月份若干天的空氣質(zhì)量情況,并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)統(tǒng)計(jì)圖共統(tǒng)計(jì)了 天的空氣質(zhì)量情況;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;空氣質(zhì)量為“優(yōu)”所在扇形的圓心角度數(shù)是 ;
(3)從小源所在環(huán)保興趣小組4名同學(xué)(2名男同學(xué),2名女同學(xué))中,隨機(jī)選取兩名同學(xué)去該空氣質(zhì)量監(jiān)測(cè)站點(diǎn)參觀,則恰好選到一名男同學(xué)和一名女同學(xué)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,∠ABC=45°,OC∥AD,AD交BC的延長(zhǎng)線于D,AB交OC于E.
(1)求證:AD是⊙O的切線;
(2)若⊙O的直徑為6,線段BC=2,求∠BAC的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過(guò)A、C兩點(diǎn).
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā).沿線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向終點(diǎn)D運(yùn)動(dòng).速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E
①過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.當(dāng)t為何值時(shí),線段EG最長(zhǎng)?
②連接EQ.在點(diǎn)P、Q運(yùn)動(dòng)的過(guò)程中,判斷有幾個(gè)時(shí)刻使得△CEQ是等腰三角形?請(qǐng)直接寫(xiě)出相應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=﹣1,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱(chēng)軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱(chēng)軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CA=CB,AB=10,0°<∠C<60°,AF⊥BC于點(diǎn)F,在FC上截取FD=FB,點(diǎn)E是AC上一點(diǎn),連接DA、DE,且∠ADE=∠B.
(1)求證:ED=EC;
(2)若∠C=30°,求BD長(zhǎng);
(3)在(2)的條件下,將圖中△DEC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)得到△DE′C′,請(qǐng)問(wèn)在旋轉(zhuǎn)的過(guò)程中,以點(diǎn)C、E、C′、E′為頂點(diǎn)的四邊形可以構(gòu)成平行四邊形嗎?若可以,請(qǐng)求出該平行四邊形的面積,若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,某校開(kāi)展“經(jīng)典誦讀”比賽活動(dòng),誦讀材料有《論語(yǔ)》、《大學(xué)》、《中庸》(依次用字母A,B,C表示這三個(gè)材料),將A,B,C分別寫(xiě)在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時(shí)小禮先從中隨機(jī)抽取一張卡片,記下內(nèi)容后放回,洗勻后,再由小智從中隨機(jī)抽取一張卡片,他倆按各自抽取的內(nèi)容進(jìn)行誦讀比賽.
(1)小禮誦讀《論語(yǔ)》的概率是 ;(直接寫(xiě)出答案)
(2)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求他倆誦讀兩個(gè)不同材料的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)深圳某知名網(wǎng)站調(diào)查,2015年網(wǎng)民們最關(guān)注的熱點(diǎn)話題分別有:消費(fèi)、教育、環(huán)保、反腐及其他共五類(lèi)根據(jù)調(diào)查的部分相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如圖所示:根據(jù)所給信息解答下列問(wèn)題:
請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
若2015年深圳常住人口約有1100萬(wàn),請(qǐng)你估計(jì)最關(guān)注環(huán)保問(wèn)題的人數(shù)約為多少萬(wàn)人?
在這次調(diào)查中,某單位共有甲、乙、丙、丁四人最關(guān)注教育問(wèn)題,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,試用列表或樹(shù)形圖的方法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com