如圖,D是△ABC中∠ABC和∠ACB的平分線交點,過D作與BC平行的直線,分別交AB、AC于E、F,求證:EB+FC=EF.

證明:∵BD為∠ABC的平分線,
∴∠EBD=∠CBD,
又∵EF∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴EB=ED,
同理FC=FD,
又∵EF=ED+DF,
∴EB+FC=ED+DF=EF.
分析:由BD為角平分線,利用角平分線的性質得到一對角相等,再由EF與BC平行,利用兩直線平行內錯角相等得到一對角相等,等量代換可得出∠EBD=∠EDB,利用等角對等邊得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代換可得證.
點評:此題考查了等腰三角形的判定,平行線的性質,利用了等量代換的思想,熟練掌握性質與判定是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,DE是△ABC中邊AC的垂直平分線,若BC=18cm,AB=10cm,則△ABD的周長為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,AD是△ABC中BC邊上的中線,E,F(xiàn)分別是AD、BE的中點,若△BFD的面積為6,則△ABC的面積等于
48

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,D是△ABC中AC邊上的一點,根據(jù)下列條件不可推出△BDC∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,D是△ABC中BC邊上一點,AB=AC=BD,AD=DC,則∠B的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,P是△ABC中∠B,∠C兩角平分線的交點,過點P作DE∥BC,分別與AB、AC交于點D、E,DE=10,則DB+EC=
10
10

查看答案和解析>>

同步練習冊答案