【題目】如圖,在中,,.點是射線上一點,點是線段上一點,且點與點關于直線對稱,連接,過點作直線,垂足為點,交的延長線于點.
(1)根據題意完成作圖;
(2)請你寫出與之間的數量關系,并進行證明;
(3)寫出線段,之間的數量關系,并進行證明.
【答案】(1)如圖見解析;(2).證明見解析;(3).證明見解析.
【解析】
(1)根據對稱性可知,由此可畫出點E;再利用三角板畫,并延長FE、CB,兩者的交點即為點G;
(2)先利用直角三角形的性質求出,再根據外角定義和直角三角形兩銳角互余的性質即可得出答案;
(3)如圖(見解析),連接,過點作,垂足為點,再利用對稱性和直角三角形兩銳角互余的性質得出,再利用三角形全等的判定定理與性質可得,然后在中,得出,從而可得出答案.
(1)對稱性可知,由此可畫出點E;再利用三角板畫,并延長FE、CB,兩者的交點即為點G,作圖結果如下所示:
(2),證明過程如下:
∵在中,
又為的外角
在中,
由得;
(3),證明過程如下:
如圖,連接,過點作,垂足為點
∵點與點關于直線對稱
設
在中,,則
在中,
又
在與中,
又∵在中,
.
科目:初中數學 來源: 題型:
【題目】如圖①,矩形ABCD被對角線AC分為兩個直角三角形,AB=3,BC=6.現將Rt△ADC繞點C順時針旋轉90°,點A旋轉后的位置為點E,點D旋轉后的位置為點F.以C為原點,以BC所在直線為x軸,以過點C垂直于BC的直線為y軸,建立如圖②的平面直角坐標系.
(1)求直線AE的解析式;
(2)將Rt△EFC沿x軸的負半軸平行移動,如圖③.設OC=x(0<x≤9),Rt△EFC與Rt△ABO的重疊部分面積為s;求當x=1與x=8時,s的值;
(3)在(2)的條件下s是否存在最大值?若存在,求出這個最大值及此時x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD是正方形ABCD的對角線,BC=2,邊BC在其所在的直線上平移,將通過平移得到的線段記為PQ,連接PA、QD,并過點Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?
(2)請判斷OA、OP之間的數量關系和位置關系,并加以證明;
(3)在平移變換過程中,設y=S△OPB,BP=x(0≤x≤2),求y與x之間的函數關系式,并求出y的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線l:y=x+與x軸負半軸、y軸正半軸分別相交于A、C兩點,拋物線y=﹣x2+bx+c經過點B(1,0)和點C.
(1)求拋物線的解析式;
(2)已知點Q是拋物線y=﹣x2+bx+c在第二象限內的一個動點.
①如圖1,連接AQ、CQ,設點Q的橫坐標為t,△AQC的面積為S,求S與t的函數關系式,并求出S的最大值;
②連接BQ交AC于點D,連接BC,以BD為直徑作⊙I,分別交BC、AB于點E、F,連接EF,求線段EF的最小值,并直接寫出此時點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現有甲、乙兩個空調安裝隊分別為A、B兩個公司安裝空調,甲安裝隊為A公司安裝66臺空調,乙安裝隊為B公司安裝80臺空調,乙安裝隊提前一天開工,最后與甲安裝隊恰好同時完成安裝任務.已知甲隊比乙隊平均每天多安裝2臺空調,求甲、乙兩個安裝隊平均每天各安裝多少臺空調.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一年一度的國家學生體質測試中,金星中學對全校2000名男生的1000m測試成績進行了抽查,學校從初三年級抽取了一部分男生的成績,并繪制成統(tǒng)計表,繪制成頻數直方圖.
序號 | 范圍(單位:秒) | 頻數 | 頻率 |
1 | 170<x≤200 | 5 | 0.1 |
2 | 200<x≤230 | 13 | a |
3 | 230<x≤260 | 15 | 0.3 |
4 | 260<x≤290 | c | d |
5 | 290<x≤320 | 5 | 0.1 |
6 | 320<x≤350 | 2 | 0.04 |
7 | 350<x≤380 | 2 | 0.04 |
合計 | b | 1.00 |
(1)在這個問題中,總體是什么?
(2)直接寫出a,b,c,d的值.
(3)補全頻數直方圖.
(4)初中畢業(yè)生體能測試項目成績評定標準是男生1000m不超過4′20″(即260秒)為合格,你能估計出該校初中男生的1000m的合格人數嗎?如果能,請求出合格的人數;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a+b=1,ab=-1.設
(1)計算S2;
(2)請閱讀下面計算S3的過程:
=
=
=
∵a+b=1,ab=-1,
∴_______.
你讀懂了嗎?請你先填空完成(2)中S3的計算結果;再計算S4;
(3)猜想并寫出, , 三者之間的數量關系(不要求證明,且n是不小于2的自然數),根據得出的數量關系計算S3.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com