【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,3),點(diǎn)B的坐標(biāo)為(n,1).
(1)求n的值,并結(jié)合圖象,直接寫出不等式<kx+b的解集;
(2)點(diǎn)E為x軸上一個動點(diǎn),若S△AEB=6,求點(diǎn)E的坐標(biāo).
【答案】(1)n=6,x<0或2<x<6;(2)E點(diǎn)坐標(biāo)為(8,0)或(﹣4,0).
【解析】
(1)先把A點(diǎn)坐標(biāo)代入y=求出m得到反比例函數(shù)解析式為y=,再把B(n,1)代入y=可求出n,然后利用函數(shù)圖象寫出一次函數(shù)圖象在反比例函數(shù)圖象上方所對應(yīng)的自變量的范圍即可;
(2)易得直線AB的解析式為y=﹣x+4,再求出直線AB與x軸的交點(diǎn)坐標(biāo)為(2,0),設(shè)E(x,0),利用三角形面積公式得到×|x﹣2|×(3﹣1)=6,然后解方程求出x即可得到E點(diǎn)坐標(biāo).
(1)把A(2,3)代入y=得m=2×3=6,
∴反比例函數(shù)解析式為y=,
把B(n,1)代入y=得n=6,
當(dāng)2<x<6或x<0時,<kx+b,
即不等式<kx+b的解集為x<0或2<x<6;
(2)易得直線AB的解析式為y=﹣x+4,
當(dāng)x=0時,﹣x+4=0,解得x=8,則直線AB與x軸的交點(diǎn)坐標(biāo)為(8,0)
設(shè)E(x,0),
∴×|x﹣8|×(3﹣1)=6,解得x=14或x=2
∴E點(diǎn)坐標(biāo)為(14,0)或(2,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個圖形有6個小圓,第2個圖形有10個小圓,第3個圖形有16個小圓,第4個圖形有24個小圓,…則第n個圖形有__個小圓.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個已知圖形G1、G2,在G1上任取一點(diǎn)P,在G2上任取一點(diǎn)Q,當(dāng)線段PQ的長度最小時,我們稱這個最小長度為G1、G2的“密距”.例如,如圖,A(﹣2,3),B(1,3),C(1,0),則點(diǎn)A與射線OC之間的“密距”為,點(diǎn)B與射線OC之間的“密距”為3.如果直線y=x﹣1和雙曲線y=之間的“密距”為,則k值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖8,AB兩地之間有一座山,以前從A地到B地需要經(jīng)過C地.現(xiàn)在政府出資打通了一條山嶺隧道,使從A地到B地可沿直線AB直接到達(dá).已知BC=8km,∠A=45°,∠B=53°.
(1)求點(diǎn)C到直線AB的距離;
(2)求現(xiàn)在從A地到B地可比原來少走多少路程?(結(jié)果精確到0.1km;參考數(shù)據(jù):≈1.41,sin53°≈0.80,cos53°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點(diǎn)F.
(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;
(2)如圖2,將△ACD沿線段AD對折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DE∥AM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若有理數(shù)a,b滿足等式,則稱a,b是“雉水有理數(shù)對”,記作如:數(shù)對,都是“雉水有理數(shù)對”.
數(shù)對______填“是”或“不是”“雉水有理數(shù)對”;
若是“雉水有理數(shù)對”,求m的值;
請寫出一個符合條件的“錐水有理數(shù)對”______注意:不能與題目中已有的“雉水有理數(shù)對”重復(fù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E為AB上一動點(diǎn)(不與A、B重合).將△EBC沿CE翻折至△EFC,延長EF交邊AD于點(diǎn)G.
(1)連結(jié)AF,若 AF∥CE.證明:點(diǎn)E為AB的中點(diǎn);
(2)證明:GF=GD;
(3)若AD=10,設(shè)EB=x,GD=y,求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個選項(xiàng)中,不是y關(guān)于x的函數(shù)的是( )
A.|y|=x﹣1 B.y= C.y=2x﹣7 D.y=x2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com