【題目】為表彰在某活動中表現(xiàn)積極的同學,老師決定購買文具盒與鋼筆作為獎品.已知5個文具盒、2支鋼筆共需100元;3個文具盒、1支鋼筆共需57元.
(1)每個文具盒、每支鋼筆各多少元?
(2)若本次表彰活動,老師決定購買10件作為獎品,若購買個文具盒,10件獎品共需元,求與的函數(shù)關系式.如果至少需要購買3個文具盒,本次活動老師最多需要花多少錢?
【答案】(1);(2) 147元.
【解析】
試題設每個文具盒x元、每支鋼筆y元,然后根據(jù)花費100元與57元分別列出方程組成方程組,解二元一次方程組即可;根據(jù)題設若購買x個文具盒,獎品共有10件,根據(jù)以上求得文具盒和鋼筆的單價,根據(jù)總價等于單價乘以數(shù)量得到一個總價與x之間的函數(shù)解析式,然后根據(jù)函數(shù)的性質即可求出最值.
試題解析:(1)設每個文具盒x元,每支鋼筆y元,由題意得:
,解之得:.
(2)由題意得:w="14x+15(10-x)=150-x" ,
因為w隨x增大而減小,,∴當x=3時,
W最大值=150-3=147,即最多花147元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊矩形鐵皮,長110cm,寬70cm,在它的四角各切去一個同樣的正方形,然后將四周突出部分折起,就能制作一個無蓋的方盒,如果要制作的無蓋的方盒的底面積為4500cm2,那么鐵皮各角應切去的正方形邊長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)在圖1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,則能得如下兩個結論:① DC = BC; ②AD+AB=AC.請你證明結論②;
(2)在圖2中,把(1)中的條件“∠ABC=∠ADC=90°”改為∠ABC+∠ADC=180°,其他條件不變,則(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉90°得到AE.
(1)連接EC,如圖①,試探索線段BC,CD,CE之間滿足的等量關系,并證明你的結論;
(2)連接DE,如圖②,求證:BD2+CD2=2AD2
(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=,CD=1,則AD的長為 ▲ .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個可以自由轉動的轉盤被平均分成3個扇形,分別標有1、2、3三個數(shù)字,小王和小李各轉動一次轉盤為一次游戲,當每次轉盤停止后,指針所指扇形內的數(shù)為各自所得的數(shù),一次游戲結束得到一組數(shù)(若指針指在分界線時重轉).
(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結果;
(2)求每次游戲結束得到的一組數(shù)恰好是方程x2-3x+2=0的解的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.
(1)求證:無論k取什么實數(shù)值,該方程總有兩個不相等的實數(shù)根;
(2)當Rt△ABC的斜邊長a為,且兩條直角邊的長b和c恰好是這個方程的兩個根時,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1).
(1)分別求出這兩個函數(shù)的解析式;
(2)當x取什么范圍時,反比例函數(shù)值大于0;
(3)若一次函數(shù)與反比例函數(shù)另一交點為B,且縱坐標為﹣4,當x取什么范圍時,反比例函數(shù)值大于一次函數(shù)的值;
(4)試判斷點P(﹣1,5)關于x軸的對稱點P′是否在一次函數(shù)y=kx+m的圖象上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com