【題目】四邊形ABCD的對(duì)角線交于點(diǎn)E,有AE=EC,BE=ED,以AB為直徑的⊙O過(guò)點(diǎn)E.
(1)求證:四邊形ABCD的是菱形;
(2)若CD的延長(zhǎng)線與圓相切于點(diǎn)F,已知直徑AB=4,求陰影部分的面積.

【答案】
(1)證明:

∵AE=CE,BE=ED,

∴四邊形ABCD是平行四邊形,

∵AB為直徑,

∴∠AEB=90°,

即AC⊥BD,

∴四邊形ABCD是菱形


(2)解:連接OF,

∵CF為⊙O的切線,

∴∠OFC=90°,

∵AB=4,

∴OA=OB=2,

∵四邊形ABCD是菱形,

∴AB=AD=4,

過(guò)D作DH⊥AB于H,

則DH=OF=2,

∠DAH=30°,

∵四邊形ABCD是菱形,

∴∠DAC=∠BAC=15°,

∴∠BOE=2∠BAC=30°,

∴S扇形BOE= = ,SAOE= =1,

∴S陰影=S半圓O﹣SAOE﹣S扇形BOE= ﹣1﹣ = π﹣1


【解析】(1)根據(jù)平行四邊形的判定得出四邊形ABCD是平行四邊形,再根據(jù)菱形的判定得出即可;(2)連接OF,過(guò)D作DH⊥AB于H,分別求出扇形BOE、△AOE、半圓O的面積,即可得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是由幾個(gè)相同的小正方體搭成的幾何體,

(1)搭成這個(gè)幾何體需要      個(gè)小正方體;

(2)畫(huà)出這個(gè)幾何體的主視圖和左視圖;

(3)在保持主視圖和左視圖不變的情況下,最多可以拿掉n個(gè)小正方體,則n=     ,請(qǐng)?jiān)趥溆脠D中畫(huà)出拿掉n個(gè)小正方體后新的幾何體的俯視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,已知∠B∠C的平分線相交于點(diǎn)F,經(jīng)過(guò)點(diǎn)FDE//BC,交ABD,交AC于點(diǎn)E,若BD+CE=9,則線段DE的長(zhǎng)為( )

A. 9 B. 8 C. 7 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線a∥b,直角三角形如圖放置,若∠1+∠A=65°,則∠2的度數(shù)為(
A.15°
B.20°
C.25°
D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若一次函數(shù)的圖象與x軸的交于點(diǎn),與y軸交于點(diǎn)下列結(jié)論:①關(guān)于x的方程的解為;②x的增大而減。虎坳P(guān)于x的方程的解為;④關(guān)于x的不等式的解為其中所有正確的為  

A. ①②③ B. ①③ C. ①②④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),ADBE相交于點(diǎn)點(diǎn)FG分別是線段AO,

BO的中點(diǎn).

求證:四邊形DEFG是平行四邊形;

如圖2,連接CO,若,求證:四邊形DEFG是菱形;

的前提下,當(dāng)滿足什么條件時(shí),四邊形DEFG能成為正方形?直接回答即可,不必證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O為線段AD外一點(diǎn),M、C、B、NAD上任意四點(diǎn),連接OM、OC、OB、ON,下列結(jié)論不正確的是(

A. O為頂點(diǎn)的角共有15個(gè)

B. OM平分∠AOC,ON平分∠BOD,∠AOD=5∠COB,∠MON=(∠MOC+∠BON)

C. MAB中點(diǎn),NCD中點(diǎn),則MN=(AD-CB)

D. MC=CB,MN=ND,則CD=2CN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一條長(zhǎng)為18cm的細(xì)繩圍成一個(gè)等腰三角形.

(1)如果腰長(zhǎng)是底邊長(zhǎng)的2倍,求三角形各邊的長(zhǎng);

(2)能圍成有一邊的長(zhǎng)是4cm的等腰三角形嗎?若能,求出其他兩邊的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案