【題目】某商場同時購進(jìn)甲、乙兩種商品共200件,其進(jìn)價和售價如表,
商品名稱 | 甲 | 乙 |
進(jìn)價(元/件) | 80 | 100 |
售價(元/件) | 160 | 240 |
設(shè)其中甲種商品購進(jìn)x件,該商場售完這200件商品的總利潤為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進(jìn)多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?
【答案】(1)y=60x+28000;(2)至少要購進(jìn)100件甲商品,商場可獲得的最大利潤是22000元
【解析】
(1)根據(jù)總利潤=(甲的售價-甲的進(jìn)價)×購進(jìn)甲的數(shù)量+(乙的售價-乙的進(jìn)價)×購進(jìn)乙的數(shù)量代入列關(guān)系式,并化簡;
(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;
解:(1)根據(jù)題意得:y=(16080)x+(240100)(200x),
即:y= 60x+28000,
則y與x的函數(shù)關(guān)系式為:y=60x+28000;
(2)80x+100(200x)≤18000,
解得:x≥100,
∴至少要購進(jìn)100件甲商品,
y=60x+28000,
∵60<0,
∴y隨x的增大而減小,
∴當(dāng)x=100時,y有最大值,
y大=60×100+28000=22000,
∴若售完這些商品,則商場可獲得的最大利潤是22000元
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(x2y-2xy+y2)(-4xy);
(2)6mn2(2-mn4)+(-mn3)2;
(3)-4x2·(xy-y2)-3x·(xy2-2x2y);
(4).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△MNP的三邊分別向兩邊延長,并在每兩條延長線上任取兩點連接起來,又得到了三個新的三角形.求證:∠A+∠B+∠C+∠D+∠E+∠F=360°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A,∠B,∠C的對邊分別是a,b,c,則滿足下列條件但不是直角三角形的是( )
A.a2-c2=b2B.a=n2-1, b=2n, c=n2+1 ( n>1)
C.∠A:∠B:∠C = 3:4:5D.∠A=∠B = ∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市政部門為了保護(hù)生態(tài)環(huán)境,計劃購買A,B兩種型號的環(huán)保設(shè)備.已知購買一套A型設(shè)備和三套B型設(shè)備共需230萬元,購買三套A型設(shè)備和兩套B型設(shè)備共需340萬元.
(1)求A型設(shè)備和B型設(shè)備的單價各是多少萬元;
(2)根據(jù)需要市政部門采購A型和B型設(shè)備共50套,預(yù)算資金不超過3000萬元,問最多可購買A型設(shè)備多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展校園藝術(shù)節(jié)系列活動,派小明到文體超市購買若干個文具袋作為獎品.這種文具袋標(biāo)價每個10元,請認(rèn)真閱讀結(jié)賬時老板與小明的對話:
(1)結(jié)合兩人的對話內(nèi)容,求小明原計劃購買文具袋多少個?
(2)學(xué)校決定,再次購買鋼筆和簽字筆共50支作為補充獎品,兩次購買獎品總支出不超過400元.其中鋼筆標(biāo)價每支8元,簽字筆標(biāo)價每支6元,經(jīng)過溝通,這次老板給予8折優(yōu)惠,那么小明最多可購買鋼筆多少支?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c(b,c是常數(shù))經(jīng)過A(0,2)、B(4,0)兩點.
(1)求該拋物線的解析式和頂點坐標(biāo);
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這條拋物線于N,求當(dāng)t取何值時,MN有最大值?最大值是多少?
(3)在(1)的情況下,以A、M、N、D為頂點作平行四邊形,請直接寫出第四個頂點D的所有坐標(biāo)(直接寫出結(jié)果,不必寫解答過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com