【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)、如圖a,求證:△BCP≌△DCQ;
(2)、如圖,延長(zhǎng)BP交直線DQ于點(diǎn)E.
①如圖b,求證:BE⊥DQ;
②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說(shuō)明理由.
【答案】(1)證明見(jiàn)試題解析;(2)①證明見(jiàn)試題解析;②△DEP為等腰直角三角形.
【解析】試題分析:(1)、根據(jù)正方形性質(zhì)得出BC=DC,根據(jù)旋轉(zhuǎn)圖形的性質(zhì)得出CP=CQ以及∠PCB=∠QCD,從而得出三角形全等;(2)、①、根據(jù)全等得出∠PBC=∠QBC,設(shè)BE和CD交點(diǎn)為M,根據(jù)對(duì)頂角得出∠DME=∠BMC,從而說(shuō)明BE⊥QD;②、根據(jù)等邊三角形的性質(zhì)得出PB=PC=BC,∠PBC=∠BPC=∠PCB=60°,則∠PCD=30°,根據(jù)BC=DC,CP=CQ得出△PCD為等腰三角形,然后根據(jù)△DCQ為等邊三角形,從而得出∠DEP=90°,從而得出答案.
試題解析:(1)、∵四邊形ABCD是正方形,∴BC=DC
又∵將線段CP繞點(diǎn)C順時(shí)針旋90°得到線段CQ,∴CP=CQ,∠PCQ=90°∴∠PCD+∠QCD=90°
又∵∠PCB+∠PCD=90° ∴∠PCB=∠QCD
在△BCP和△DCQ中 BC=DC,CP=CQ,∠PCB=∠QCD ∴△BCP≌△DCQ
(2)、①∵△BCP≌△DCQ ∴∠PBC=∠QBC
設(shè)BE和CD交點(diǎn)為M ∴∠DME=∠BMC ∠MED=∠MCB=90°∴BE⊥QD
②△DEP為等腰直角三角形,
∵△BOP為等邊三角形 ∴PB=PC=BC ∠PBC=∠BPC=∠PCB=60°
∴∠PCD=90°-60°=30°∴∠DCQ=90°-60°=30°
又∵BC=DC CP=CQ∴PC=DC DC=CQ ∴△PCD是等腰三角形
△DCQ是等邊三角形 ∴∠CPD=∠CDP=75°∠CDQ=60°∴∠EPD=180°-15°-60°=45°
∠EDP=180°-75°-60°="45" °∴∠EPD=∠EDP PE=DE ∴∠DEP=180°-45°-45°=90°
∴△DEP是等腰直角三形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的對(duì)稱(chēng)軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:
①;② 方程的兩個(gè)根是;③ ;④當(dāng)時(shí), 的取值范圍是;⑤ 當(dāng)時(shí), 隨增大而增大;其中結(jié)論正確有____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果+30%表示增加30%,那么-8%表示( ).
A. 增加14% B. 增8% C. 減少8% D. 減少24%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀:因?yàn)橐粋(gè)非負(fù)數(shù)的絕對(duì)值等于它本身,負(fù)數(shù)的絕對(duì)值等于它的相反數(shù),所以當(dāng)a≥0時(shí)|a|=a,當(dāng)a<0時(shí)|a|=﹣a,根據(jù)以上閱讀完成:
(1)|3.14﹣π|= .
(2)計(jì)算:| ﹣1|+| ﹣ |+| ﹣ |…+| ﹣ |+| + |.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一艘觀光游船從港口A處以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)生了求救信號(hào),一艘在港口正東方向B處的海警船接到求救信號(hào),測(cè)得事故船在它的北偏東37°方向,馬上以40海里/時(shí)的速度前往救援,求海警船到達(dá)事故船C處所需的大約時(shí)間.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,AC=CD,⊙O的半徑為3, 的長(zhǎng)為π.
(1)直線CD與⊙O相切嗎?說(shuō)明理由。
(2)求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com