如圖,在△ABC中,∠ACB=90°,CD是AB邊上的中線,若CD=3,則AB=______.
6.

試題分析:由直角三角形的性質(zhì)知:斜邊上的中線等于斜邊的一半,即可求出CD的長(zhǎng).
試題解析:∵在Rt△ABC中,∠ACB=90°,CD=3,CD是AB邊上的中線,
∴AB=2CD=6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,AD∥BC,AC=AB,AC平分∠DAB,F(xiàn)為BC上一點(diǎn),且BF=AD,連接DF交AC于E點(diǎn),連接BE.
(1)求證:BE=DC;
(2)若AD=4,BC=6,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,菱形ABCD中,點(diǎn)E,M在A,D上,且CD=CM,點(diǎn)F為AB上的點(diǎn),且∠ECF=∠B
(1)若菱形ABCD的周長(zhǎng)為8,且∠D=67.5°,求△MCD的面積。
(2)求證:BF=EF-EM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,,設(shè)c為最長(zhǎng)邊.當(dāng)時(shí),△ABC是直角三角形;當(dāng)時(shí),利用代數(shù)式的大小關(guān)系,可以判斷△ABC的形狀(按角分類).
(1)請(qǐng)你通過(guò)畫(huà)圖探究并判斷:當(dāng)△ABC三邊長(zhǎng)分別為6,8,9時(shí),△ABC為_(kāi)___三角形;當(dāng)△ABC三邊長(zhǎng)分別為6,8,11時(shí),△ABC為_(kāi)_____三角形.
(2)小明同學(xué)根據(jù)上述探究,有下面的猜想:“當(dāng)時(shí),△ABC為銳角三角形;當(dāng)時(shí),△ABC為鈍角三角形.” 請(qǐng)你根據(jù)小明的猜想完成下面的問(wèn)題:
當(dāng),時(shí),最長(zhǎng)邊c在什么范圍內(nèi)取值時(shí),△ABC是直角三角形、銳角三角形、鈍角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

圖1是李晨在一次課外活動(dòng)中所做的問(wèn)題研究:他用硬紙片做了兩個(gè)三角形,分別為△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.將△DEF的斜邊DE與△ABC的斜邊AC重合在一起,并將△DEF沿AC方向移動(dòng).在移動(dòng)過(guò)程中,D、E兩點(diǎn)始終在AC邊上(移動(dòng)開(kāi)始時(shí)點(diǎn)D與點(diǎn)A重合).
(1)請(qǐng)回答李晨的問(wèn)題:若CD=10,則AD=    ;
(2)如圖2,李晨同學(xué)連接FC,編制了如下問(wèn)題,請(qǐng)你回答:
①∠FCD的最大度數(shù)為    ;   
②當(dāng)FC∥AB時(shí),AD=    ;
③當(dāng)以線段AD、FC、BC的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形,且FC為斜邊時(shí),AD=    ;
④△FCD的面積s的取值范圍是    .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若一個(gè)正多邊形的每一個(gè)外角都是30°,則這個(gè)正多邊形的內(nèi)角和等于 ____________ .      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠ADE的大小是( )
 
A.45°B.54°C.40°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,∠ACB=90°,CD⊥AB,垂足為D,下列結(jié)論錯(cuò)誤的是(    )
A.有三個(gè)直角三角形
B.∠1=∠2
C.∠1和∠B都是∠A的余角
D.∠2=∠A

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等腰三角形的頂角為80°,那么它的一個(gè)底角為       

查看答案和解析>>

同步練習(xí)冊(cè)答案