將正方形ABCD繞中心O順時針旋轉(zhuǎn)角得到正方形,如圖1所示.

(1)當=45時(如圖2),若線段與邊的交點為,線段的交點為,求證:   ① OE=OF;    ② .

(2)當時,成立嗎?若成立,請證明;若不成立,請說明理由.

 

【答案】

證明見解析

【解析】(1)  證明①OE=OF;  

=45時,即,又

 ,同理           …… (2分) 

證明②

Rt和Rt中,有     …… (3分)       

(2)成立  證明如下:法一證明:連結(jié),

是兩個正方形的中心,

,   

        …… (3分)

   ∴         …… (2分)

(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得:∠AOA1=45°,即可證明∠PFO=90°,則OE=OF,②可根據(jù)HL公理證明兩三角形全等;

(2)連結(jié),由已知知,,得出求得從而結(jié)論得證;

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、正方形ABCD在平面直角坐標系中的位置如圖,將正方形ABCD繞D點順時針方向旋轉(zhuǎn)90°后,B點到達的位置坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系中,O為坐標原點,每個小方格的邊長為1個單位長度.正方形ABCD頂點都在格點上,其中,點A的坐標為(1,1).
(1)若將正方形ABCD繞點A順時針方向旋轉(zhuǎn)90°,點B到達點B1,點C到達點C1,點D到達點D1,求點B1、C1、D1的坐標.
(2)若線段AC1的長度與點D1的橫坐標的差恰好是一元二次方程x2+ax+1=0的一個根,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•煙臺)正方形ABCD在坐標系中的位置如圖所示,將正方形ABCD繞D點順時針方向旋轉(zhuǎn)90°后,B點到達的位置坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•三元區(qū)質(zhì)檢)把邊長為a的正方形ABCD和正方形AEFG按圖①放置,點B、D分別在AE、AG上,將正方形ABCD繞點A順時針旋轉(zhuǎn)角α(0°<α<45°).
(1)連接BE、DG,如圖②所示,求證:BE=DG;
(2)連接AF、BD,BC交AF于P,CD交AG于Q,連接PQ,如圖③所示.
①當PQ∥BD時,求證:∠PAB=∠QAD;
②求證:旋轉(zhuǎn)過程中△PCQ的周長等于定值2a.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀下列材料:如圖(1)在四邊形ABCD中,若AB=AD,BC=CD,則把這樣的四邊形稱之為“箏形”.
解答問題:如圖(2)將正方形ABCD繞著點B逆時針旋轉(zhuǎn)一定角度后,得到正方形GBEF,邊AD與EF相交于點H.
請你判斷四邊形ABEH是否是“箏形”,說明你的理由.

查看答案和解析>>

同步練習冊答案