【題目】下列圖形都是由同樣大小的棋子按一定的規(guī)律組成,其中第①個(gè)圖形有1顆棋子,第②個(gè)圖形一共有6顆棋子,第③個(gè)圖形一共有16顆棋子,……,則第⑩個(gè)圖形中棋子的顆數(shù)為__________

【答案】226

【解析】

通過(guò)觀(guān)察圖形得到:第①個(gè)圖形中棋子的個(gè)數(shù)為1=1+5×0;第②個(gè)圖形中棋子的個(gè)數(shù)為1+5=6;第③個(gè)圖形中棋子的個(gè)數(shù)為1+5+10= 1+5×(1+2=16;…由此得出第n個(gè)圖形中棋子的個(gè)數(shù)為1+51+2++n-1= 1+nn-1),然后把n=10代入計(jì)算即可.

通過(guò)觀(guān)察圖形得到第①個(gè)圖形中棋子的個(gè)數(shù)為;

第②個(gè)圖形中棋子的個(gè)數(shù)為;

第③個(gè)圖形中棋子的個(gè)數(shù)為;

所以第個(gè)圖形中棋子的個(gè)數(shù)為

然后把代入可得; ,

故答案為:226.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代對(duì)于利用方程解決實(shí)際問(wèn)題早有研究,《九章算術(shù)》中提到這么一道“以繩測(cè)井”的題:以繩測(cè)井,若將繩三折測(cè)之,繩多四尺:若將繩四折測(cè)之,繩多一尺.繩長(zhǎng)、井深各幾何?

這道題大致意思是:用繩子測(cè)量水井深度,如果將繩子折成三等份,那么每等份井外余繩四尺:如果將繩子折成四等份,那么每等份井外余繩一尺.問(wèn)繩長(zhǎng)和井深各多少尺?若設(shè)井深為x尺,則求解井深的方程正確的是(  )

A.3x+4)=4x+1B.3x+44x+1

C.x+4x+1D.x4x1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1,2,3,4......按下列方式排列:

1)按照這樣的排列,第8行的最后一個(gè)數(shù)是 ,這個(gè)數(shù)的平方根是 ;正中間一列,自上而下第個(gè)數(shù)是 (表示);

2)求第15行所有數(shù)的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于有理數(shù),定義一種新運(yùn)算,規(guī)定.

1)計(jì)算的值.

2)當(dāng)在數(shù)軸上的位置如圖所示時(shí),化簡(jiǎn).

3)當(dāng)時(shí),是否一定有或者?若是,則說(shuō)明理由;若不是,則舉例說(shuō)明.

4)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有A,B,C,D四張卡片,其正面分別寫(xiě)有“、寸、又、日”,有的能獨(dú)立成字,有的能組合成字.現(xiàn)四張卡片背面朝上.

(1)任意翻過(guò)一張卡片,能獨(dú)立成字的概率為_(kāi)_______;

(2)先任意翻過(guò)一張卡片作為左部偏旁,再任意翻過(guò)一張與其組合,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求翻過(guò)的兩張卡片恰好能組合成字的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花圃銷(xiāo)售一批名貴花卉,平均每天可售出20盆,每盆盈利40元,為了增加盈利并盡快減少庫(kù)存,花圃決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每盆花卉每降1元,花圃平均每天可多售出2盆.

1)若花圃平均每天要盈利1200元,每盆花卉應(yīng)降價(jià)多少元?

2)每盆花卉降低多少元時(shí),花圃平均每天盈利最多,是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知ABC三個(gè)頂點(diǎn)分別為A﹣1,2)、B2,1)、C4,5).

1)畫(huà)出ABC關(guān)于x對(duì)稱(chēng)的A1B1C1;

2)以原點(diǎn)O為位似中心,在x軸的上方畫(huà)出A2B2C2,使A2B2C2ABC位似,且位似比為2,并求出A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y1=x(x≥0),y2(x>0)的圖象如圖6-Z-6所示,則下列結(jié)論:

①兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(2,2);

②當(dāng)x>2時(shí),y1>y2;

③當(dāng)x=1時(shí),BC=3;

④當(dāng)x逐漸增大時(shí),y1隨著x的增大而增大,y2隨著x的增大而減。

其中正確結(jié)論的序號(hào)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問(wèn)題發(fā)現(xiàn):如圖 1,已知點(diǎn) F,G 分別在直線(xiàn) ABCD 上,且 ABCD,若∠BFE=40°,∠CGE=130°,則∠GEF 的度數(shù)為 ;

2)拓展探究:∠GEF,∠BFE,∠CGE 之間有怎樣的數(shù)量關(guān)系?寫(xiě)出結(jié)論并給出證明; 答:∠GEF= .

證明:過(guò)點(diǎn) E EHAB

∴∠FEH=BFE ),

ABCDEHAB,(輔助線(xiàn)的作法)

EHCD ),

∴∠HEG=180°-CGE ),

∴∠FEG=HFG+FEH= .

3)深入探究:如圖 2,∠BFE 的平分線(xiàn) FQ 所在直線(xiàn)與∠CGE 的平分線(xiàn)相交于點(diǎn) P,試探究∠GPQ 與∠GEF 之間的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案