如圖,四邊形ABCD中,AC⊥BD交BD于點(diǎn)E,點(diǎn)F,M分別是AB,BC的中點(diǎn),BN平分∠ABE交AM于點(diǎn)N,AB=AC=BD.連接MF,NF.
(1)判斷△BMN的形狀,并證明你的結(jié)論;
(2)判斷△MFN與△BDC之間的關(guān)系,并說(shuō)明理由.
(1)答:△BMN是等腰直角三角形.
證明:∵AB=AC,點(diǎn)M是BC的中點(diǎn),
∴AM⊥BC,AM平分∠BAC.
∵BN平分∠ABE,AC⊥BD,
∴∠AEB=90°,
∴∠EAB+∠EBA=90°,
∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.
∴△BMN是等腰直角三角形;
(2)答:△MFN∽△BDC.
證明:∵點(diǎn)F,M分別是AB,BC的中點(diǎn),
∴FM∥AC,F(xiàn)M=AC.
∵AC=BD,
∴FM=BD,即.
∵△BMN是等腰直角三角形,
∴NM=BM=BC,即,
∴.
∵AM⊥BC,
∴∠NMF+∠FMB=90°.
∵FM∥AC,
∴∠ACB=∠FMB.
∵∠CEB=90°,
∴∠ACB+∠CBD=90°.
∴∠CBD+∠FMB=90°,
∴∠NMF=∠CBD.
∴△MFN∽△BDC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線(xiàn)a∥b,射線(xiàn)DC與直線(xiàn)a相交于點(diǎn)C,過(guò)點(diǎn)D作DE⊥b于點(diǎn)E,已知∠1=25°,則∠2的度數(shù)為( 。
| A. | 115° | B. | 125° | C. | 155° | D. | 165° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
第20屆世界杯足球賽正在如火如荼的進(jìn)行,爸爸想通過(guò)一個(gè)游戲決定小明能否看今晚的比賽:在一個(gè)不透明的盒子中放入三張卡片,每張卡片上寫(xiě)著一個(gè)實(shí)數(shù),分別為3,,2(每張卡片除了上面的實(shí)數(shù)不同以外其余均相同),爸爸讓小明從中任意取一張卡片,如果抽到的卡片上的數(shù)是有理數(shù),就讓小明看比賽,否則就不能看.
(1)請(qǐng)你直接寫(xiě)出按照爸爸的規(guī)則小明能看比賽的概率;
(2)小明想了想,和爸爸重新約定游戲規(guī)則:自己從盒子中隨機(jī)抽取兩次,每次抽取一張卡片,第一次抽取后記下卡片上的數(shù),再將卡片放回盒中抽取第二次,如果抽取的兩數(shù)之積是有理數(shù),自己就看比賽,否則就不看.請(qǐng)你用列表法或樹(shù)狀圖法求出按照此規(guī)則小明看比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線(xiàn)AB與⊙O相切于點(diǎn)A,弦CD∥AB,E,F(xiàn)為圓上的兩點(diǎn),且∠CDE=∠ADF.若⊙O的半徑為,CD=4,則弦EF的長(zhǎng)為( 。
A. 4 B. 2 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
關(guān)于x的方程m(x+h)2+k=0(m,h,k均為常數(shù),m≠0)的解是x1=﹣3,x2=2,則方程m(x+h﹣3)2+k=0的解是( 。
| A. | x1=﹣6,x2=﹣1 | B. | x1=0,x2=5 | C. | x1=﹣3,x2=5 | D. | x1=﹣6,x2=2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)A(﹣3.0)、C(0,4),點(diǎn)B在拋物線(xiàn)上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線(xiàn)的解析式;
(2)線(xiàn)段AB上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P作y軸的平行線(xiàn),交拋物線(xiàn)于點(diǎn)Q,求線(xiàn)段PQ的最大值;
(3)拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列命題中:(1)過(guò)一點(diǎn)有且只有一條直線(xiàn)垂直于已知直線(xiàn);(2)經(jīng)過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)平行;(3)過(guò)線(xiàn)段AB外一點(diǎn)P作線(xiàn)段AB的中垂線(xiàn);(4)如果直線(xiàn)l1與l2相交,直線(xiàn)l2與l3相交,那么l1∥l2;(5)如果兩條直線(xiàn)都與同一條直線(xiàn)垂直,那么這兩條直線(xiàn)平行;(6)兩條直線(xiàn)沒(méi)有公共點(diǎn),那么這條直線(xiàn)一定平行;(7)兩條直線(xiàn)與第三條直線(xiàn)相交,如果內(nèi)錯(cuò)角相等,則同旁?xún)?nèi)角互補(bǔ);其中正確的命題個(gè)數(shù)為 ( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com