精英家教網(wǎng)如圖,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10,點(diǎn)E在下底邊BC上,點(diǎn)F在腰AB上.
(1)若EF平分等腰梯形ABCD的周長(zhǎng),設(shè)BE長(zhǎng)為x,試用含x的代數(shù)式表示BF及△BEF
的面積(提示:作AK⊥BC于K,作FG⊥BC于G);
(2)是否存在線段EF將等腰梯形ABCD的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)BE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)作AK⊥BC于K,F(xiàn)G⊥BC于G,根據(jù)△FBG∽△ABK對(duì)應(yīng)邊成比例即可求解;
(2)根據(jù)四邊形的面積即可求出x的值.
解答:精英家教網(wǎng)解:(1)梯形的周長(zhǎng)為4+2×5+10=24,
由題意:BF+EB=12,即BF+x=12,
∴BF=12-x,作AK⊥BC于K,F(xiàn)G⊥BC于G,
則BK=3,AK=4,
又∵△FBG∽△ABK,
FG
AK
=
FB
AB
,即
GF
4
=
12-x
5
,
∴FG=
4
5
(12-x),
∴△BEF的面積=
1
2
BE•FG=
2
5
(-x2+12x);

(2)又∵S四邊形ABCD=
1
2
(10+4)×4=28,則
2
5
(-x2+12x)=14,
解得:x=5或x=7,
∵BF=12-x≤5,
∴x≥7,
∴x=7,
即存在線段EF將等腰梯形的周長(zhǎng)和面積同時(shí)平分.
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),難度適中,關(guān)鍵是巧妙地作出輔助線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止).設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個(gè)直角梯形時(shí),求t的值;
(2)試問(wèn)是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點(diǎn),求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長(zhǎng)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中考必備’04全國(guó)中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動(dòng),且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長(zhǎng)度有什么關(guān)系?借助備用圖說(shuō)明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線l經(jīng)過(guò)梯形中位線的中點(diǎn)并滿足什么條件時(shí),一定能平分梯形的面積?(只要求說(shuō)出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案