【題目】如圖,矩形紙片ABCD中,AB=6,AD=10,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為E、F,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是

【答案】2≤x≤6
【解析】解:如圖:①當(dāng)F、D重合時(shí),BP的值最小;

根據(jù)折疊的性質(zhì)知:AF=PF=10;

在Rt△PFC中,PF=10,F(xiàn)C=6,則PC=8;

∴BP=xmin=10﹣8=2;②當(dāng)E、B重合時(shí),BP的值最大;根據(jù)折疊的性質(zhì)即可得到AB=BP=6,即BP的最大值為6.

故答案為:2≤x≤6.

利用極端原理求解:①BP最小時(shí),F(xiàn)、D重合,由折疊的性質(zhì)知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進(jìn)而可求得BP的值,即BP的最小值;②BP最大時(shí),E、B重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=34,即BP的最大值為4;根據(jù)上述兩種情況即可得到BP的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長為半徑畫弧分別交AB,AC于點(diǎn)MN,再分別以點(diǎn)M,N為圓心,大于MN的長為半徑畫弧兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB=100°,AC=AE,BC=BD,則∠DCE的度數(shù)為

A. 20° B. 25° C. 30° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠AOC:∠BOC21,將直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.

1)在圖1中,∠AOC   °,∠MOC   °

2)將圖1中的三角板按圖2的位置放置,使得OM在射線QA上,求∠CON的度數(shù);

3)將上述直角三角板按圖3的位置放置,OM在∠BOC的內(nèi)部,說明∠BON﹣∠COM的值固定不變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖1所示,A點(diǎn)坐標(biāo)為(﹣4,0),B點(diǎn)坐標(biāo)為(6,0),點(diǎn)D為AC的中點(diǎn),點(diǎn)E是拋物線在第二象限圖象上一動(dòng)點(diǎn),經(jīng)過點(diǎn)A,B,C三點(diǎn)的拋物線的解析式為y=ax2+bx+8.

(1)求拋物線的解析式;
(2)如圖1,連接DE,把點(diǎn)A沿直線DE翻折,點(diǎn)A的對稱點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對稱軸上時(shí),求G點(diǎn)的坐標(biāo);
(3)圖2中,點(diǎn)E運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)G恰好落在BC上時(shí),求E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=60°AB的垂直平分線分別交AB,AC于點(diǎn)D和點(diǎn)E.CE=2,則AB的長是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長均為個(gè)單位的正方形網(wǎng)格圖中,建立了直角坐標(biāo)系,按要求解答下列問題:

1)寫出三個(gè)頂點(diǎn)的坐標(biāo);

2)畫出向右平移個(gè)單位后的圖形;

3)求在平移過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE是△ACD的角平分線,B在DA延長線上,AE∥BC,F(xiàn)為BC中點(diǎn),判斷AE與AF的位置關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案