【題目】如圖,已知∠AOB=75°,∠COD=35°,∠COD在∠AOB的內(nèi)部繞著點(diǎn)O旋轉(zhuǎn)(OCOA不重合,ODOB不重合),若OE為∠AOC的角平分線.則2BOE-∠BOD的值為______

【答案】110°

【解析】

由角平分線的定義可知∠AOC=2AOE,由角的和差可知∠BOE=AOB-AOE,代入2∠BOE∠BOD整理即可.

OE∠AOC的角平分線,

∴∠AOC=2AOE

∵∠BOE=AOB-AOE,

2∠BOE∠BOD

=2(AOB-AOE) ∠BOD

=2AOB-2AOE ∠BOD

=2AOB-AOC ∠BOD

=2AOB-(AOC +∠BOD)

=2AOB-(AOB -∠COD)

=AOB+COD

=75°+35°

=110°.

故答案為:110°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖①,四邊形ABDC是正方形,以A為頂點(diǎn),作等腰直角三角形AEF,EAF=90°,線段BECF之間的數(shù)量關(guān)系為:_____.(直接寫(xiě)出結(jié)果,不需要證明)

2)如圖②,四邊形ABDC是菱形,以A為頂點(diǎn),作等腰三角形AEFAE=AF,BAC=EAF,(1)中結(jié)論成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

3)如圖③,四邊形ABDC是矩形,以A為頂點(diǎn),作直角三角形AEF,EAF=90°,AB=AC,AE=AF,當(dāng)∠EAB=60°時(shí),延長(zhǎng)BECF于點(diǎn)G

①求證:BECF

②當(dāng)AB=12,AE=4時(shí),求線段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC,AB=AC=6,BAC=108°,點(diǎn)D在邊BC,BAD=36°.

(1)求證:BAD∽△BCA;

(2)AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABD中,∠ABD=90°,AB=1,sin∠ADB=,點(diǎn)EAD的中點(diǎn),線段BA繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到BC(旋轉(zhuǎn)角小于180°),使BCAD.連接DC,BE

(1)則四邊形BCDE是________,并證明你的結(jié)論;

(2)求線段AB旋轉(zhuǎn)過(guò)程中掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】未成年人思想道德建設(shè)越來(lái)越受到社會(huì)的關(guān)注.某青少年研究機(jī)構(gòu)隨機(jī)調(diào)查了某校 100名學(xué)生寒假花零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹(shù)立正確的消費(fèi)觀.根據(jù)調(diào)查 數(shù)據(jù)制成了如下的頻數(shù)分布表(部分空格未填).

某校 100 名學(xué)生寒假花零花錢數(shù)量的頻數(shù)分布表:

1)完成該頻數(shù)分布表;

2)畫(huà)出頻數(shù)分布直方圖.

3)研究認(rèn)為應(yīng)對(duì)消費(fèi) 150 元以上的學(xué) 生提出勤儉節(jié)約的建議.試估計(jì)應(yīng)對(duì)該校1200 學(xué)生中約多少名學(xué)生提出該項(xiàng)建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從泰州乘“K”字頭列車A“T”字頭列車B都可直達(dá)南京,已知A車的平均速度為80 km/hB車的平均速度為A車的1.5倍,且行完全程B車所需時(shí)間比A車少40分鐘.

(1)求泰州至南京的鐵路里程;

(2)若兩車以各自的平均速度分別從泰州、南京同時(shí)相向而行,問(wèn)經(jīng)過(guò)多少時(shí)間兩車相距40 km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地下車庫(kù)出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn)當(dāng)車輛經(jīng)過(guò)時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示欄桿寬度忽略不計(jì),其中米,那么適合該地下車庫(kù)的車輛限高標(biāo)志牌為

(參考數(shù)據(jù):

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若線段上的一個(gè)點(diǎn)把這條線段分成12的兩條線段,則稱這個(gè)點(diǎn)是這條線段的三等分點(diǎn).如圖1,點(diǎn)C在線段AB上,且ACCB12,則點(diǎn)C是線段AB的一個(gè)三等分點(diǎn),顯然,一條線段的三等分點(diǎn)有兩個(gè).

1)已知:如圖2DE15cm,點(diǎn)PDE的三等分點(diǎn),求DP的長(zhǎng).

2)已知,線段AB15cm,如圖3,點(diǎn)P從點(diǎn)A出發(fā)以每秒1cm的速度在射線AB上向點(diǎn)B方向運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā),先向點(diǎn)A方向運(yùn)動(dòng),當(dāng)與點(diǎn)P重合后立馬改變方向與點(diǎn)P同向而行且速度始終為每秒2cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求t的值.

若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃購(gòu)買籃球、排球共20個(gè),購(gòu)買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買3個(gè)籃球的費(fèi)用與購(gòu)買5個(gè)排球的費(fèi)用相同。

(1)籃球和排球的單價(jià)各是多少元?

(2)若購(gòu)買籃球不少于8個(gè),所需費(fèi)用總額不超過(guò)800元.請(qǐng)你求出滿足要求的所有購(gòu)買方案,并直接寫(xiě)出其中最省錢的購(gòu)買方案

查看答案和解析>>

同步練習(xí)冊(cè)答案