【題目】如圖,∠AOB=90°,OA=9cm,OB=3cm,一機(jī)器人在點(diǎn)B處看見一個(gè)小球從點(diǎn)A出發(fā)沿著AO方向勻速滾向點(diǎn)O,機(jī)器人立即從點(diǎn)B出發(fā),沿BC方向勻速前進(jìn)攔截小球,恰好在點(diǎn)C處截住了小球.如果小球滾動(dòng)的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將點(diǎn)A(1,﹣3)沿x軸向左平移3個(gè)單位長度,再沿y軸向上平移5個(gè)單位長度后得到的點(diǎn)A′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,時(shí)鐘的時(shí)針,分針均按時(shí)正常轉(zhuǎn)動(dòng).
(1)分針每分針轉(zhuǎn)動(dòng)了 度,時(shí)針每分鐘轉(zhuǎn)動(dòng)了 度;
(2)若現(xiàn)在時(shí)間恰好是2點(diǎn)整,求:
①經(jīng)過多少分鐘后,時(shí)針與分針第一次成90°角;
②從2點(diǎn)到4點(diǎn)(不含2點(diǎn))有幾次時(shí)針與分針成60°角,分別是幾時(shí)幾分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動(dòng)點(diǎn)C從原點(diǎn)O開始沿OA方向以每秒1個(gè)單位長度移動(dòng),動(dòng)點(diǎn)D從點(diǎn)B開始沿BO方向以每秒1個(gè)單位長度移動(dòng),動(dòng)點(diǎn)C、D同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)D到達(dá)原點(diǎn)O時(shí),點(diǎn)C、D停止運(yùn)動(dòng).
(1)直接寫出拋物線的解析式: ;
(2)求△CED的面積S與D點(diǎn)運(yùn)動(dòng)時(shí)間t的函數(shù)解析式;當(dāng)t為何值時(shí),△CED的面積最大?最大面積是多少?
(3)當(dāng)△CED的面積最大時(shí),在拋物線上是否存在點(diǎn)P(點(diǎn)E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小學(xué),我們已經(jīng)初步了解到,正方形的每個(gè)角都是90°,每條邊都相等.如圖,在正方形ABCD外側(cè)作直線AQ,且∠QAD=30°,點(diǎn)D關(guān)于直線AQ的對(duì)稱點(diǎn)為E,連接DE、BE,DE交AQ于點(diǎn)G,BE交AQ于點(diǎn)F.
(1)求∠ABE的度數(shù);
(2)若AB=6,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在4×4的方格中有五個(gè)同樣大小的正方形如圖1擺放,移動(dòng)其中一個(gè)正方形到空白方格中,與其余四個(gè)正方形圖2至圖5組成的新圖形是一個(gè)軸對(duì)稱圖形,請(qǐng)?jiān)谙旅婢W(wǎng)格中畫出四種互不全等的新圖形.
(2)定義:如圖1,點(diǎn)M,N把線段AB分割成AM,MN和BN.若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M,N是線段AB的勾股分割點(diǎn).已知點(diǎn)C是線段AB上的一定點(diǎn),其位置如圖2所示,請(qǐng)?jiān)贐C上畫一個(gè)點(diǎn)D,使點(diǎn)C,D是線段AB的勾股分割點(diǎn)(要求尺規(guī)作圖,保留作圖痕跡,畫出一種情形即可);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)P是Rt△ABC斜邊AB上一動(dòng)點(diǎn)(不與A、B重合),分別過A、B向直線CP作垂線,垂足分別為E、F、Q為斜邊AB的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系是 ,QE與QF的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QE與QF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當(dāng)點(diǎn)P在線段BA(或AB)的延長線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請(qǐng)畫出圖形并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,則圖中全等三角形的對(duì)數(shù)是( )
A.1對(duì) B.2對(duì) C.3對(duì) D.4對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com