精英家教網(wǎng)如圖所示,OE,OD分別平分∠AOC和∠BOC.
(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β(α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從(1)、(2)的結果中,你發(fā)現(xiàn)了什么規(guī)律.
分析:(1)根據(jù)角平分線的定義,求得∠COE和∠COD的度數(shù),結合圖形,知∠DOE=∠COE-∠COD;
(2)和(1)的計算方法一樣;
(3)綜合(1)和(2)的結論,發(fā)現(xiàn)規(guī)律:∠DOE=
1
2
∠AOB.
解答:解:(1)∵∠AOB=90°,∠BOC=40°
∴∠AOC=∠AOB+∠BOC=90°+40°=130°.
又∵OE,OD分別平分∠AOC和∠BOC,
∴∠COE=
1
2
∠AOC=
1
2
×130°=65°,
∠COD=
1
2
∠BOC=
1
2
×40°=20°.
∴∠DOE=∠COE-∠COD=65°-20°=45°;

(2)∵∠AOB=α,∠BOC=β
∴∠AOC=∠AOB+∠BOC=α+β.
又∵OE,OD分別平分∠AOC和∠BOC,
∴∠COE=
1
2
∠AOC=
1
2
(α+β),
∠COD=
1
2
∠BOC=
1
2
β.
∴∠DOE=∠COE-∠COD=
1
2
(α+β)-
1
2
β
=
1
2
α+
1
2
β-
1
2
β
=
1
2
α;

(3)∠DOE的大小與∠BOC的大小無關,即∠DOE=
1
2
∠AOB.
點評:此題主要是考查了角平分線的定義和角的和、差計算方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,OE,OD分別平分∠AOB和∠BOC,若∠AOB=90°,∠EOD=70°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,OE,OD分別平分∠AOB和∠BOC,且∠AOB=90°;
(1)如果∠BOC=40°,求∠EOD的度數(shù);
(2)如果∠EOD=70°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,OE,OD分別平分∠AOC和∠BOC,
(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度數(shù);
(2)如果∠AOB=α,∠BOC=β(α、β均為銳角,α>β),其他條件不變,求∠DOE;
(3)從 (1)、(2)的結果中,你發(fā)現(xiàn)了什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,OE和OD分別是∠AOB和∠BOC的平分線,且∠AOB=90°,∠BOC=40°,求∠EOD的度數(shù).

查看答案和解析>>

同步練習冊答案