【題目】關(guān)于x的一元二次方程(k-2)x2-4x+2=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2-4x+k=0與x2+mx-1=0有一個(gè)相同的根,求此時(shí)m的值.
【答案】(1)k<4且k≠2.(2)m=0或m=.
【解析】
(1)由題意,根據(jù)一元二次方程的定義和一元二次方程根的判別式列出關(guān)于k的不等式組,解不等式組即可求得對(duì)應(yīng)的k的取值范圍;
(2)由(1)得到符合條件的k的值,代入原方程,解方程求得x的值,然后把所得x的值分別代入方程x2+mx-1=0即可求得對(duì)應(yīng)的m的值.
(1)∵一元二次方程(k-2)x2-4x+2=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=16-8(k-2)=32-8k>0且k-2≠0.
解得:k<4且k≠2.
(2)由(1)可知,符合條件的:k=3,
將k=3代入原方程得:方程x2-4x+3=0,
解此方程得:x1=1,x2=3.
把x=1時(shí),代入方程x2+mx-1=0,有1+m-1=0,解得m=0.
把x=3時(shí),代入方程x2+mx-1=0,有9+3m-1=0,解得m=.
∴m=0或m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=2 ,把邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到線段BP,連接AP并延長(zhǎng)交CD于點(diǎn)E,連接PC,則三角形PCE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,過O點(diǎn)作OP⊥AB,交弦AC于點(diǎn)D,交⊙O于點(diǎn)E,且使∠PCA=∠ABC.
(1)求證:PC是⊙O的切線;
(2)若∠P=60°,PC=2,求PE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若要把一條直線平移到某個(gè)位置,經(jīng)常可通過方式一:上(下)平移,或者方式二:左(右)平移的其中一種達(dá)到目的.現(xiàn)有直線交軸于點(diǎn),若把直線向右平移8個(gè)單位長(zhǎng)度得到直線,直線交軸于點(diǎn).
(1)求直線的解析式,并說明直線若按方式一是如何平移到直線的位置;
(2)若直線上的一點(diǎn),點(diǎn)按方式一平移后在直線上的對(duì)應(yīng)點(diǎn)記為點(diǎn).
①若點(diǎn)在直線上,且,求點(diǎn)的坐標(biāo)(用含的式子表示) ;
②當(dāng)時(shí),試證明直線必將四邊形的面積二等分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6元/件,該產(chǎn)品在正式投放市場(chǎng)前通過代銷點(diǎn)進(jìn)行了為期一個(gè)月(30天)的試營銷,售價(jià)為8元/件,工作人員對(duì)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(件)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時(shí)間每增加1天,日銷售量減少5件.
(1)第24天的日銷售量是件,日銷售利潤是元.
(2)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)日銷售利潤不低于640元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ⑴的平分線和外角的平分線相交于點(diǎn),。
(1)求的度數(shù);(寫理由)
(2)如圖(2),在⑴的條件下,再畫和的角平分線相交于點(diǎn),求的度數(shù);
(3)若,按上述規(guī)律繼續(xù)畫下去,請(qǐng)直接寫出的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡(jiǎn)并求值
(1)5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y=﹣
(2)已知a2﹣a﹣2=0,求a2﹣2(a2﹣a+3)﹣(a2﹣a﹣4)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿射線BC方向平移3cm得到△DEF.若△ABC的周長(zhǎng)為14cm,則四邊形ABFD的周長(zhǎng)為( )
A. 14cm B. 17cm C. 20cm D. 23cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com