如圖,四邊形是由四邊形經(jīng)過旋轉(zhuǎn)得到的,如果用有序數(shù)對(duì)表示方格紙上點(diǎn)的位置,用表示點(diǎn)的位置,那四邊形旋轉(zhuǎn)得到四邊形時(shí)的旋轉(zhuǎn)中心用有序數(shù)對(duì)表示是__________.

 

【答案】

(3,3)

 【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,E、F是平行四邊行ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要證△ADF≌△CBE,因?yàn)锳E=CF,則兩邊同時(shí)加上EF,得到AF=CE,又因?yàn)锳BCD是平行四邊形,得出AD=CB,∠DAF=∠BCE,從而根據(jù)SAS推出兩三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省九年級(jí)上學(xué)期階段檢測(cè)數(shù)學(xué)卷(解析版) 題型:解答題

已知:如圖,E、F是平行四邊行ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要證△ADF≌△CBE,因?yàn)锳E=CF,則兩邊同時(shí)加上EF,得到AF=CE,又因?yàn)锳BCD是平行四邊形,得出AD=CB,∠DAF=∠BCE,從而根據(jù)SAS推出兩三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A、B是直線上的兩個(gè)定點(diǎn),點(diǎn)C、D在直線上運(yùn)動(dòng)(點(diǎn)C在點(diǎn)D的左側(cè)),AB=CD=6cm,已知//,連接AC、BD、BC,把沿BC折疊得.

問題1:當(dāng)、D兩點(diǎn)重合時(shí),則AC=___________cm;

問題2:當(dāng)、D兩點(diǎn)不重合時(shí),連接,可探究發(fā)現(xiàn),

       下面是小明的思考:

(1)將沿BC翻折,點(diǎn)A關(guān)于直線BC的對(duì)稱點(diǎn)為,連接交BC所在直線于點(diǎn)M,由軸對(duì)稱的性質(zhì),得,這一關(guān)系在變化過程中保持不變.

(2)因?yàn)樗倪呅蜛BCD是平行四邊,設(shè)對(duì)角線的交點(diǎn)是O,易知,這一關(guān)系在變化過程中也保持不變。

請(qǐng)你借助于小明的思考,說明的理由。

問題3:當(dāng)、D兩點(diǎn)不重合時(shí),若直線間的距離為cm,且以點(diǎn)為頂點(diǎn)的四邊形是矩形,求AC的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案