【題目】二次函數(shù)y=ax2+bx+c的圖象如圖示,下列結論:

(1)b0;(2)c0;(3)b2﹣4ac0; (4)a﹣b+c0,

(5)2a+b0; (6)abc0;其中正確的是_____;(填寫序號)

【答案】(2)(3)(4)(5)

【解析】:(1)函數(shù)開口向下,a0,且對稱軸在y軸的右邊,b0,故結論錯誤;

2)函數(shù)與y軸交與正半軸,c0,故結論正確;

3∵拋物線與x軸于兩個交點,b24ac0;故結論正確

4∵當x=﹣1y0,ab+c0,故結論正確;

51,2a+b0;故結論正確

6a0,b0,c0,abc0故結論錯誤.

故答案為:2)(3)(4)(5).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一張矩形紙片的長AD=12,寬AB=2,點E在邊AD上,點F在邊BC上,將四邊形ABFE沿直線EF翻折后,點B落在邊AD的三等分點G處,則EG的長為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2bxca≠0)的部分圖像,其中點A-1,0)是x軸上的一個交點,點Cy軸上的交點.

1)若過點A的直線l與這個二次函數(shù)的圖像的另一個交點為D,與該圖像的對稱軸交于點E,與y軸交于點F,且DEEFFA

①求的值;

②設這個二次函數(shù)圖像的頂點為P,問:以DF為直徑的圓能否經過點P?若能,請求出此時二次函數(shù)的關系式;若不能,請說明理由.

2)若點C坐標為(0,-1),設Sabc ,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,AC、DC為弦,∠ACD=60°PAB延長線上的點,∠APD=30°

1)求證:DP⊙O的切線;

2)若⊙O的半徑為3cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點O是邊BC的中點,連接DO并延長,交AB延長線于點E,連接BD,EC.

(1)求證:四邊形BECD是平行四邊形;

(2)若∠A=50°,則當∠BOD=___°時,四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+2x+m圖象過點A(3,0),與y軸交于點B

(1)求m的值;

(2)若直線AB與這個二次函數(shù)圖象的對稱軸交于點P,求點P的坐標.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點A10),與y軸的交點B在(0,2)和(0,1)之間(不包括這兩點),對稱軸為直線x=1.下列結論:①abc0 4a+2b+c0 4acb28a abc.其中含所有正確結論的選項是( 。

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6相交于A(, )和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸,交拋物線于點C.

(1)求拋物線的表達式;

(2)是否存在這樣的點P,使線段PC的長有最大值?若存在,求出這個最大值,若不存在,請說明理由;

(3)當△PAC為直角三角形時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進A、B兩種商品,若購進A種商品20件和B種商品15件需380元;若購進A種商品15件和B種商品10件需280元.

(1)求A、B兩種商品的進價分別是多少元?

(2)若購進A、B兩種商品共100件,總費用不超過900元,問最多能購進A種商品多少件?

查看答案和解析>>

同步練習冊答案