【題目】如圖,某測(cè)量小組為了測(cè)量山BC的高度,在地面A處測(cè)得山頂B的仰角45°,然后沿著坡度為i=1:的坡面AD走了200米達(dá)到D處,此時(shí)在D處測(cè)得山頂B的仰角為60°,求山高BC(結(jié)果保留根號(hào)).

【答案】BC= 100+100(米).

【解析】

DFACF,根據(jù)i=1:,AD=200,可知tanDAF=,可知∠DAF=30°,進(jìn)而求出DF的長(zhǎng)度根據(jù)所給角的度數(shù)可知△ABD是等腰三角形,AD=BD,解直角三角形BDE可求出BE,根據(jù)BC=BE+CE求出BC即可.

DFACF.

DF:AF=1:,AD=200米,

tanDAF=,

∴∠DAF=30°,

DF=AD=×200=100(米),

∵∠DEC=BCA=DFC=90°,

∴四邊形DECF是矩形,

EC=DF=100(米),

∵∠BAC=45°,BCAC,

∴∠ABC=45°,

∵∠BDE=60°,DEBC,

∴∠DBE=90°﹣BDE=90°﹣60°=30°,

∴∠ABD=ABC﹣DBE=45°﹣30°=15°,BAD=BAC﹣1=45°﹣30°=15°,

∴∠ABD=BAD,

AD=BD=200(米),

RtBDE中,sinBDE= ,

BE=BDsinBDE=200×=100(米),

BC=BE+EC=100+100(米).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”(如圖所示)就是一例.

這個(gè)三角形的構(gòu)造法則為:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和.事實(shí)上,這個(gè)三角形給出了(為正整數(shù))的展開(kāi)式(的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1、1,恰好對(duì)應(yīng)展開(kāi)式中各項(xiàng)的系數(shù);第四行的四個(gè)數(shù)1、、1,恰好對(duì)應(yīng)著展開(kāi)式中各項(xiàng)的系數(shù)等等.根據(jù)上面的規(guī)律,的展開(kāi)式中各項(xiàng)系數(shù)最大的數(shù)為_______;式子的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角三角形ABC中,∠ACB90°,∠B36°DAB的中點(diǎn),EDABBCE,連接CD,則∠CDE:∠ECD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,,且滿足.

(1),交軸于,求點(diǎn)坐標(biāo);

(2)過(guò)點(diǎn),交,若,求的長(zhǎng);

(3)為第一象限一點(diǎn),軸于.上截取,的中點(diǎn),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

(1)一個(gè)箱子,如果裝橙子可以裝18個(gè),如果裝梨可以裝16個(gè),現(xiàn)共有橙子、梨400個(gè),而且裝梨的箱子是裝橙子箱子的2倍.請(qǐng)算一下,裝橙子和裝梨的箱子各多少個(gè)?

(2)一群小孩分一堆蘋(píng)果,每人3個(gè)多7個(gè),每人4個(gè)少3個(gè),求有幾個(gè)小孩?幾個(gè)蘋(píng)果?

(3)一架飛機(jī)在兩城之間飛行,風(fēng)速為24千米/時(shí).順風(fēng)飛行需要2小時(shí)50分,逆風(fēng)飛行需要3小時(shí),求無(wú)風(fēng)時(shí)飛機(jī)的速度和兩城之間的航程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:三角形ABC,A=90AB=AC,DBC的中點(diǎn),如圖,E,F分別是ABAC上的點(diǎn),且BE=AF,求證:DEF為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若四邊形的兩條對(duì)角線分別平分兩組對(duì)角,則該四邊形一定是(

A. 平行四邊形 B. 菱形 C. 矩形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,點(diǎn)D是等邊△ABC的邊BC上一點(diǎn),連接AD,以AD為一邊,向右作等邊三角形ADE,連接CE,求證:AC=CD+CE.

(類比探究)

(1)如果點(diǎn)DBC的延長(zhǎng)線上,其它條件不變,請(qǐng)?jiān)趫D②的基礎(chǔ)上畫(huà)出滿足條件的圖形,寫(xiě)出線段AC,CDCE之間的數(shù)量關(guān)系,并說(shuō)明理由.

(2)如果點(diǎn)DCB的延長(zhǎng)線上,請(qǐng)?jiān)趫D③的基礎(chǔ)上畫(huà)出滿足條件的圖形,并直接寫(xiě)出AC,CD,CE之間的數(shù)量關(guān)系,不需要說(shuō)明理由.數(shù)量關(guān)系:_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知E是平行四邊形ABCDBC邊的中點(diǎn),連接AE并延長(zhǎng)AEDC的延長(zhǎng)線于點(diǎn)F。

(1)求證:△ABE≌△FCE;

(2)連接AC、BF,若AE=BC,求證:四邊形ABFC為矩形;

(3)在(2)條件下,當(dāng)△ABC再滿足一個(gè)什么條件時(shí),四邊形ABFC為正方形。

查看答案和解析>>

同步練習(xí)冊(cè)答案