【題目】如圖,在平面直角坐標(biāo)系中,已知A(a,0),B(b,0),其中a,b滿足|a+1|+(b﹣3)2=0.

1)填空:a=  b=  ;

2)如果在第三象限內(nèi)有一點M﹣2,m),請用含m的式子表示ABM的面積;

3)在(2)條件下,當(dāng)m=時,在y軸上有一點P,使得BMP的面積與ABM的面積相等,請求出點P的坐標(biāo).

【答案】(1)a=-1,b=3;

(2)S△ABM=-2m

(3)P點坐標(biāo)為(0, )或(7,0)或(0,

【解析】試題分析:(1)根據(jù)非負(fù)數(shù)的意義,可直接求出求出a、b的值;

(2)MC⊥ABC,由M點在第三象限,可結(jié)合頭像變化,然后再討論,根據(jù)三角形的面積求解出三角形的面積即可;

(3)根據(jù)題意,可分為在x軸上或y軸上,然后根據(jù)割補法求三角形的面積,確定點的坐標(biāo).

試題解析:

解:(1)填空:a=-1 ,b= 3 ;

(2)作MC⊥ABC,

由點M(﹣2,m)在第三象限,則MC=|m|=-m,

又A(-1,0),B(3,0),則AB=4,

S△ABM=0.5×AB×MC=0.5×4×(-m)=-2m

(3)由m=,則S△ABM=-2m=3,

當(dāng)P在x軸上時,SpBM=SABM ,因此

BP=AB=4,因此點P的坐標(biāo)為(7,0);

當(dāng)P在y軸的正半軸時,如圖,S△pBM=S△ABM=3,分別過點P、B、M作PE∥x軸,MD∥x軸,DE∥y軸,

令點P(0,n)則PE=3,BE=n,ED=n+,BD=,MD=5,由S梯形MDEP= S△pBM + S△DBM + S△pBE

即,解得n=0.3,則P(0,

當(dāng)P在y軸負(fù)半軸且在MB下方時,求得P(0.,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,AB=17,AC=10,BC邊上的高AD=8,則邊BC的長為( )

A. 21 B. 15 C. 9 D. 9或21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線C1:y=ax2+4x+4a(0<a<2)

(1)當(dāng)C1與x軸有唯一一個交點時,求此時C1的解析式;
(2)如圖①,若A(1,yA),B(0,yB),C(﹣1,yC)三點均在C1上,連BC作AE∥BC交拋物線C1于E,求點E到y(tǒng)軸的距離;
(3)若a=1,將拋物線C1先向右平移3個單位,再向下平移2個單位得到拋物線C2 , 如圖②,拋物線C2與x軸相交于點M、N(M點在N點的左邊),拋物線的對稱軸交x軸于點F,過點F的直線l與拋物線C2相交于P,Q(P在第四象限)且SFMQ=2SFNP , 求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,AB=6,AD⊥BC于點D.點P在邊AB上運動,過點P作PE∥BC,與邊AC交于點E,連接ED,以PE、ED為鄰邊作平行四邊形PEDF.設(shè)線段AP的長為x(0<x<6).

(1)求線段PE的長.(用含x的代數(shù)式表示)
(2)當(dāng)四邊形PEDF為菱形時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,AB=AC,CDAB于D

1A=38,求DCB的度數(shù);

2若AB=5,CD=3,求BC的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(12),B(3,1),C(-2-1).

1)在圖中作出關(guān)于軸對稱的.

2)寫出點的坐標(biāo)(直接寫答案).

A1_____________,B1______________,C1______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是( )

A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD中,E、F分別是AB、AD邊上的點,DE與CF交于點G.

(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證:△ADE∽△DCF;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時, 成立?并證明你的結(jié)論;
(3)如圖③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,請直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD(四個邊相等,四個角為直角)中,E,F(xiàn)分別為AD,BC的中點,P為對角線BD上的一個動點,則下列線段的長等于AP+EP最小值的是( )

A. AB B. DE C. AF D. BD

查看答案和解析>>

同步練習(xí)冊答案