【題目】下圖的轉(zhuǎn)盤被劃分成六個(gè)相同大小的扇形,并分別標(biāo)上1,2,3,4,5,6這六個(gè)數(shù)字,指針停在每個(gè)扇形的可能性相等。四位同學(xué)各自發(fā)表了下述見解:
甲:如果指針前三次都停在了3號扇形,下次就一定不會(huì)停在3號扇形;
乙:只要指針連續(xù)轉(zhuǎn)六次,一定會(huì)有一次停在6號扇形;
丙:指針停在奇數(shù)號扇形的概率與停在偶數(shù)號扇形的概率相等;
丁:運(yùn)氣好的時(shí)候,只要在轉(zhuǎn)動(dòng)前默默想好讓指針停在6號扇形,指針停在6號扇形的可能性就會(huì)加大。
其中,你認(rèn)為正確的見解有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:(1) ; (2).
【答案】(1)x1 =1 ,x2=; (2) x1 =-1,x2= .
【解析】試題分析:
根據(jù)兩方程的特點(diǎn),使用“因式分解法”解兩方程即可.
試題解析:
(1)原方程可化為: ,
方程左邊分解因式得: ,
或,
解得: , .
(2)原方程可化為: ,即,
∴,
∴或,
解得: .
【題型】解答題
【結(jié)束】
20
【題目】已知x1,x2是關(guān)于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實(shí)根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個(gè)三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示8×7的正方形網(wǎng)格中,A(2,0),B(3,2),C(4,2),請按要求解答下列問題:
(1)將△ABO向右平移4個(gè)單位長度得到△A1B1O1,請畫出△A1B1O1并寫出點(diǎn)A1的坐標(biāo);
(2)將△ABO繞點(diǎn)C(4,2)順時(shí)針旋轉(zhuǎn)90°得到△A2B2O2,請畫出△A2B2O2并寫出點(diǎn)A2的坐標(biāo);
(3)將△A1B1O1繞點(diǎn)Q旋轉(zhuǎn)90°可以和△A2B2O2完全重合,請直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,K是正方形ABCD內(nèi)一點(diǎn),以AK為一邊作正方形AKLM,使L,M,D在AK的同旁,連接BK和DM,試用旋轉(zhuǎn)的思想說明線段BK與DM的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成相應(yīng)的任務(wù);全等四邊形根據(jù)全等圖形的定又可知:四條邊分別相等、四個(gè)角也分別相等的兩個(gè)四邊形全等。在“探索三角形全等的條件”時(shí),我們把兩個(gè)三角形中“一條邊和等”或“一個(gè)角相等”稱為一個(gè)條件.智慧小組的同學(xué)類比“探索三角形全等條件”的方法探索“四邊形全等的條件”,進(jìn)行了如下思考:如圖1,四邊形和四邊形中,連接對角線,這樣兩個(gè)四邊形全等的問題就轉(zhuǎn)化為“”與“”的問題。若先給定“”的條件,只要再增加個(gè)條件使“”即可推出兩個(gè)四邊形中“四條邊分別相等、四個(gè)角也分別和等”,從而說明兩個(gè)四邊形全等。
按照智慧小組的思路,小明對圖中的四邊形與四邊形先給出和下條件: ,,小亮在此基礎(chǔ)上又給出“”兩個(gè)條件.他們認(rèn)為滿足這五個(gè)條件能得到“四邊形四邊形”.
(1)請根據(jù)小明和小亮給出的條件,說明“四邊形四邊形”的理由;
(2)請從下面兩題中任選一題作答,我選擇 題.
在材料中“小明所給條件”的基礎(chǔ)上,小穎又給出兩個(gè)條件“”.滿足這五個(gè)條件 (填“能”或“不能”)得到四邊形四邊形
在材料中“小明所給條件的基礎(chǔ)上”,再添加兩個(gè)關(guān)于原四邊形的條件(要求:不同于小亮的條件),使四邊形四邊形,你添加的條件是① ,② .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BC,AE平分∠BAD交BC于點(diǎn)E,AE⊥DE,∠1+∠2=90°,M、N分別是BA、CD延長線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F,∠F的度數(shù)為( 。
A.120°B.135°C.150°D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】人壽保險(xiǎn)公司的一張關(guān)于某地區(qū)的生命表的部分摘錄如下:
年齡 | 活到該年齡的人數(shù) | 在該年齡的死亡人數(shù) |
40 | 80500 | 892 |
50 | 78009 | 951 |
60 | 69891 | 1200 |
70 | 45502 | 2119 |
80 | 16078 | 2001 |
… | … | … |
根據(jù)上表解下列各題:
(1)某人今年50歲,他當(dāng)年去世的概率是多少?他活到80歲的概率是多少?
(保留三個(gè)有效數(shù)字)
(2)如果有20000個(gè)50歲的人參加人壽保險(xiǎn),當(dāng)年死亡的人均賠償金為10萬元,預(yù)計(jì)保險(xiǎn)公司需付賠償?shù)目傤~為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機(jī)器,現(xiàn)有甲、乙兩種型號的機(jī)器可選,其中每臺的價(jià)格、產(chǎn)量如下表:
甲型機(jī)器 | 乙型機(jī)器 | |
價(jià)格(萬元/臺) | a | b |
產(chǎn)量(噸/月) | 240 | 180 |
經(jīng)調(diào)查:購買一臺甲型機(jī)器比購買一臺乙型機(jī)器多12萬元,購買2臺甲型機(jī)器比購買3臺乙型機(jī)器多6萬元.
(1) 求a、b的值;
(2) 若該公司購買新機(jī)器的資金不超過216萬元,請問該公司有哪幾種購買方案?
(3) 在(2)的條件下,若公司要求每月的產(chǎn)量不低于1890噸,請你為該公司設(shè)計(jì)一 種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠ABC=60°,M為AD中點(diǎn),P為對角線BD上一動(dòng)點(diǎn),連接PA和PM,則PA+PM的最小值是( )
A.3B.2C.3D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com