【題目】如圖所示,已知AOB=α,在射線OA、OB上分別取點OA1=OB1,連結(jié)A1B1,在B1A1、B1B上分別取點A2、B2,使B1B2=B1A2,連結(jié)A2B2按此規(guī)律下去,記A2B1 B21A3B2B32,,An+1Bn Bn+1n,則θ2016﹣θ2015的值為(

A B C D

【答案】D

【解析】

試題分析:根據(jù)等腰三角形兩底角相等用α表示出A1B1O,再根據(jù)平角等于180°列式用α表示出θ1,再用θ1表示出θ2,并求出θ2﹣θ1,依此類推求出θ3﹣θ2,θ2013﹣θ2012,即可得解.

解:OA1=OB1,AOB=α

∴∠A1B1O=180°﹣α),

180°﹣α1=180

整理得,θ1=

B1B2=B1A2,A2B1B21

∴∠A2B2B1=180°﹣θ1),

180°﹣θ12=180°

整理得θ2==,

θ2﹣θ1===,

同理可求θ3==,

θ3﹣θ2===

,

依此類推,θ2016﹣θ2015=

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個三角形的三邊為2、5、x,另一個三角形的三邊為y2、6若這兩個三角形全等,則xy

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角ABC中,∠C=90°,點D,E分別是邊AC,BC上的點,點P是一動點.令∠PDA=1,PEB=2,DPE=α.

(1)若點P在線段AB上,如圖①,且∠α=50°,則∠1+2=      ;

(2)若點P在斜邊AB上運動,如圖②,則∠α、1、2之間的關(guān)系為      ;

(3)如圖③,若點P在斜邊BA的延長線上運動(CE<CD),請直接寫出∠α、1、2之間的關(guān)系:      ;

(4)若點P運動到ABC形外(只需研究圖④情形),則∠α、1、2之間有何關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平移和旋轉(zhuǎn)都不改變圖形的________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABC中,A=ABC,直線EF分別交ABC的邊AB,AC和CB的延長線于點D,E,F(xiàn).

(1)求證:F+FEC=2A;

(2)過B點作BMAC交FD于點M,試探究MBCF+FEC的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(1)a×a3×(﹣a23

(2)(﹣1+(2×(﹣2)3﹣(π﹣3)0

(3)(﹣0.25)11×(﹣4)12

(4)(﹣2a22×a4﹣(﹣5a42

(5)(x﹣y)6÷(y﹣x)3×(x﹣y)2

(6)314×(﹣7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論錯誤的是(

A.全等三角形對應(yīng)邊上的中線相等

B.兩個直角三角形中,兩個銳角相等,則這兩個三角形全等

C.全等三角形對應(yīng)邊上的高相等

D.兩個直角三角形中,斜邊和一個銳角對應(yīng)相等,則這兩個三角形全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:求1+2+22+23+24+…22013的值.

解:設(shè)S=1+2+22+23+24+…+22012+22013,將等式兩邊同時乘以2得:

2S=2+22+23+24+25+…+22013+22014,將下式減去上式得:

2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1

請你仿照此法計算1+3+32+33+34…+32014的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 全等三角形是指形狀相同的兩個三角形

B. 全等三角形的周長和面積分別相等

C. 全等三角形是指面積相等的兩個三角形

D. 所有的等邊三角形都是全等三角形

查看答案和解析>>

同步練習(xí)冊答案