【題目】如圖,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.
(3)當t為何值時,△DEF為直角三角形?請說明理由.
【答案】見解析
【解析】試題分析: (1)在△DFC中,∠DFC=90°,∠C=30°,由已知條件求證;
(2)求得四邊形AEFD為平行四邊形,若使AEFD為菱形則需要滿足的條件及求得;
(3)①∠EDF=90°時,四邊形EBFD為矩形.在直角三角形AED中求得AD=2AE即求得.
②∠DEF=90°時,由(2)知EF∥AD,則得∠ADE=∠DEF=90°,求得AD=AEcos60°列式得.
③∠EFD=90°時,此種情況不存在.
(1)證明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,
∴DF=t.
又∵AE=t,
∴AE=DF.
(2)解:能.理由如下:
∵AB⊥BC,DF⊥BC,
∴AE∥DF.
又AE=DF,
∴四邊形AEFD為平行四邊形.
∵AB=BCtan30°==5,
∴AC=2AB=10.
∴AD=AC﹣DC=10﹣2t.
若使AEFD為菱形,則需AE=AD,
即t=10﹣2t,t=.
即當t=時,四邊形AEFD為菱形.
(3)解:①∠EDF=90°時,四邊形EBFD為矩形.
在Rt△AED中,∠ADE=∠C=30°,
∴AD=2AE.
即10﹣2t=2t,t=.
②∠DEF=90°時,由(2)四邊形AEFD為平行四邊形知EF∥AD,
∴∠ADE=∠DEF=90°.
∵∠A=90°﹣∠C=60°,
∴AD=AEcos60°.
即10﹣2t=t,t=4.
③∠EFD=90°時,此種情況不存在.
綜上所述,當t=秒或4秒時,△DEF為直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】三角形內(nèi)有一點到三角形三頂點的距離相等,則這點一定是三角形的( 。
A. 三條中線的交點 B. 三邊垂直平分線的交點
C. 三條高的交點 D. 三條角平分線的交點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,AB= ,折疊后,點C落在AD邊上的C1處,并且點B落在EC1邊上的B1處.則BC的長為( )
A. B. 3 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是線段AB上一點,△ACD和△BCE都是等邊三角形,連結(jié)AE,BD,設AE交CD于點F.
(1)求證:△ACE≌△DCB;
(2)求證:△ADF∽△BAD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,點O是正方形的一個頂點.如果兩個正方形的邊長都等于2,那么正方形繞O點無論怎樣轉(zhuǎn)動,兩個正方形重疊的部分的面積是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】3月12日,團支部書記小穎帶領全體團員參加植樹活動,有一任務是在長25米的公路段旁栽一排樹苗,每棵樹的間距為5米,可他們手中只有一圈長20米的皮尺,怎樣栽才能保證樹苗在一條直線上,請你幫忙出出主意.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A、B兩地相距900 m,甲、乙兩人同時從A地出發(fā),以相同速度勻速步行,20 min后到達B地,甲隨后馬上沿原路按原速返回,回到A地后在原地等候乙回來;乙則在B地停留10 min后也沿原路以原速返回A地,則甲、乙兩人之間的距離s(m)與步行時間t(min)之間的函數(shù)關系可以用圖象表示為 ( 。
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com