(2006•欽州)點(diǎn)D,E分別是△ABC的邊AB,AC的中點(diǎn),則S△ADE:S△ABC( )
A.
B.
C.
D.
【答案】分析:利用三角形中位線定理,可知DE∥BC,那么△ADE∽△ABC,再利用相似三角形的面積比等于相似比的平方可求.
解答:解:∵點(diǎn)D,E分別是△ABC的邊AB,AC的中點(diǎn),
∴DE∥BC,DE=BC,AD=AB,AE=AC
===,
∴△ADE∽△ABC,相似比為,
故S△ADE:S△ABC=1:4.
故選C.
點(diǎn)評(píng):本題考查對(duì)相似三角形性質(zhì)及三角形的中位線定理的理解.(1)相似三角形周長(zhǎng)的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比、對(duì)應(yīng)角平分線的比都等于相似比.
三角形的中位線定理:三角形的中位線平行于底邊且等于底邊的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•欽州)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O為原點(diǎn),E為AB上一點(diǎn),把△CBE沿CE折疊,使點(diǎn)B恰好落在OA邊上的點(diǎn)D處,點(diǎn)A,D的坐標(biāo)分別為(5,0)和(3,0).
(1)求點(diǎn)C的坐標(biāo);
(2)求DE所在直線的解析式;
(3)設(shè)過(guò)點(diǎn)C的拋物線y=2x2+bx+c(b<0)與直線BC的另一個(gè)交點(diǎn)為M,問(wèn)在該拋物線上是否存在點(diǎn)G,使得△CMG為等邊三角形?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年廣西欽州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•欽州)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O為原點(diǎn),E為AB上一點(diǎn),把△CBE沿CE折疊,使點(diǎn)B恰好落在OA邊上的點(diǎn)D處,點(diǎn)A,D的坐標(biāo)分別為(5,0)和(3,0).
(1)求點(diǎn)C的坐標(biāo);
(2)求DE所在直線的解析式;
(3)設(shè)過(guò)點(diǎn)C的拋物線y=2x2+bx+c(b<0)與直線BC的另一個(gè)交點(diǎn)為M,問(wèn)在該拋物線上是否存在點(diǎn)G,使得△CMG為等邊三角形?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年廣西欽州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2006•欽州)點(diǎn)(2,0)關(guān)于y軸的對(duì)稱點(diǎn)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年廣西欽州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•欽州)點(diǎn)(2,0)關(guān)于y軸的對(duì)稱點(diǎn)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案