【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點(diǎn),EGAFFHCE,垂足分別為GH,設(shè)AG=x,圖中陰影部分面積為y,則yx之間的函數(shù)關(guān)系式是(  )

A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2

【答案】C

【解析】

設(shè)正方形的邊長(zhǎng)為2a,易證四邊形AFCE是平行四邊形,所以四邊形EHFG是矩形,由∠AEG=∠BCE得到等式,從而可用x表示出EG,接著用x表示EH,從而可求出yx之間的關(guān)系式.

解:設(shè)正方形的邊長(zhǎng)為2a,
BC=2aBEa,
EF分別是AB、CD的中點(diǎn),
AECF
AECF,
∴四邊形AFCE是平行四邊形,
AFCE,
EGAF,FHCE,
∴四邊形EHFG是矩形,
∵∠AEG+∠BEC=∠BCE+∠BEC=90°,
∴∠AEG=∠BCE,
tanAEGtanBCE,
,
EG=2x,
∴由勾股定理可知:AEx
ABBCx,
CE=5x
易證:AEG≌△CFH,
AGCH
EHECCH=4x,
yEGEC=8x2
故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《孫子算經(jīng)》內(nèi)容主要講數(shù)學(xué)的用途,淺顯易懂,其中有許多有趣的數(shù)學(xué)題,如“河邊洗碗”.原文:今有婦人河上蕩桮.津吏問曰:“桮何以多?“婦人曰:“家有客.”津吏曰:“客幾何?”婦人日:“二人共飯,三人共羹,四人共肉,凡用桮六十五.不知客幾何?“譯文:有一名婦女在河邊洗刷一大摞碗.一個(gè)津吏問她:“怎么刷這么多碗呢?“她回答:“家里來客人了.“津吏又問:“家里來了多少客人?”婦女答道:“2個(gè)人給一碗飯,3個(gè)人給一碗湯,4個(gè)人給一碗肉,一共要用65只碗,來了多少客人?”答:共有_____人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖①,一次函數(shù) y x - 2 的圖像交 x 軸于點(diǎn) A,交 y 軸于點(diǎn) B,二次函數(shù) y x2 bx c的圖像經(jīng)過 A、B 兩點(diǎn),與 x 軸交于另一點(diǎn) C

(1)求二次函數(shù)的關(guān)系式及點(diǎn) C 的坐標(biāo);

(2)如圖②,若點(diǎn) P 是直線 AB 上方的拋物線上一點(diǎn),過點(diǎn) P PDx 軸交 AB 于點(diǎn) DPEy 軸交 AB 于點(diǎn) E,求 PDPE 的最大值;

(3)如圖③,若點(diǎn) M 在拋物線的對(duì)稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點(diǎn) M的坐標(biāo).

① ②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+2ax-3x軸交于A、B(1,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,將拋物線沿y軸平移m(m0)個(gè)單位,當(dāng)平移后的拋物線與線段OA有且只有一個(gè)交點(diǎn)時(shí),則m的取值范圍是_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市公交總公司為節(jié)約資源同時(shí)惠及民生,擬對(duì)一些乘客數(shù)量較少的路線換成中巴車.該公司計(jì)劃購(gòu)買臺(tái)中巴車,現(xiàn)有甲、乙兩種型號(hào),已知購(gòu)買一臺(tái)甲型車比購(gòu)買一臺(tái)乙型車少萬(wàn)元,購(gòu)買臺(tái)甲型車比購(gòu)買臺(tái)乙型車多萬(wàn)元.

1)問購(gòu)買一臺(tái)甲型車和一臺(tái)乙型車分別需要多少萬(wàn)元?

2)經(jīng)了解,每臺(tái)甲型車每年節(jié)省費(fèi)用萬(wàn)元,每臺(tái)乙型車每年節(jié)省費(fèi)用萬(wàn)元,若要使購(gòu)買的這批中巴車每年至少能節(jié)省萬(wàn),則購(gòu)買甲型車至少多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在中,,,點(diǎn)的中點(diǎn).

1)如圖①,若點(diǎn)分別為上的點(diǎn),且,試探究的數(shù)量關(guān)系;并說明四邊形的面積是定值嗎?若是,請(qǐng)求出;若不是,請(qǐng)說明理由.

2)若點(diǎn)分別為延長(zhǎng)線上的點(diǎn),且,那么嗎?請(qǐng)利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,以BC為直徑的⊙OAC于點(diǎn)D,過點(diǎn)D作⊙O的切線交AB于點(diǎn)M,交CB延長(zhǎng)線于點(diǎn)N,連接OMOC1

1)求證:AMMD;

2)填空:

①若DN,則△ABC的面積為   ;

②當(dāng)四邊形COMD為平行四邊形時(shí),∠C的度數(shù)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(x0)與正比例函數(shù)y=x(x0)的圖象,點(diǎn)A(14),點(diǎn)A'(4,b)與點(diǎn)B'均在反比例函數(shù)的圖象上,點(diǎn)B在直線y=x上,四邊形AA'B'B是平行四邊形,則B點(diǎn)的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的中,,且上一點(diǎn).今打算在上找一點(diǎn),在上找一點(diǎn),使得全等,以下是甲、乙兩人的作法:

(甲)連接,作的中垂線分別交、點(diǎn)、點(diǎn),則、兩點(diǎn)即為所求

(乙)過作與平行的直線交點(diǎn),過作與平行的直線交點(diǎn),則、兩點(diǎn)即為所求

對(duì)于甲、乙兩人的作法,下列判斷何者正確?( 。

A. 兩人皆正確B. 兩人皆錯(cuò)誤

C. 甲正確,乙錯(cuò)誤D. 甲錯(cuò)誤,乙正確

查看答案和解析>>

同步練習(xí)冊(cè)答案