【題目】某商店需要購進甲、乙兩種商品共180件,其進價和售價如表:(注:獲利=售價-進價)
甲 | 乙 | |
進價(元/件) | 14 | 35 |
售價(元/件) | 20 | 43 |
(1)若商店計劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應分別購進多少件?
(2)若商店計劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.
【答案】(1)甲種商品購進100件,乙種商品購進80件;(2)有三種購貨方案,其中獲利最大的是方案一.
【解析】
(1)等量關系為:甲件數(shù)+乙件數(shù)=180;甲總利潤+乙總利潤=1240.
(2)設出所需未知數(shù),甲進價×甲數(shù)量+乙進價×乙數(shù)量<5040;甲總利潤+乙總利潤>1312.
(1)設甲種商品應購進x件,乙種商品應購進y件.
根據(jù)題意得:.
解得:.
答:甲種商品購進100件,乙種商品購進80件.
(2)設甲種商品購進a件,則乙種商品購進(180-a)件.
根據(jù)題意得.
解不等式組,得60<a<64.
∵a為非負整數(shù),∴a取61,62,63
∴180-a相應取119,118,117
方案一:甲種商品購進61件,乙種商品購進119件.
方案二:甲種商品購進62件,乙種商品購進118件.
方案三:甲種商品購進63件,乙種商品購進117件.
答:有三種購貨方案,其中獲利最大的是方案一.
科目:初中數(shù)學 來源: 題型:
【題目】某廠為了解工人在單位時間內加工同一種零件的技能水平,隨機抽取了50名工人加工的零件進行檢測,統(tǒng)計出他們各自加工的合格品數(shù)是1﹣8這8個整數(shù),現(xiàn)提供統(tǒng)計圖的部分信息如圖,請解答下列問題:
(1)根據(jù)統(tǒng)計圖,求這50名工人加工出的合格品數(shù)的中位數(shù);
(2)寫出這50名工人加工出的合格品數(shù)的眾數(shù)的可能取值;
(3)廠方認定,工人在單位時間內加工出的合格品數(shù)不低于3件為技能合格,否則,將接受技能再培訓.已知該廠有同類工人400名,請估計該廠將接受技能再培訓的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OF是∠MON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側,且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接AB、PB.
(1)如圖1,當P、Q兩點都在射線ON上時,請直接寫出線段AB與PB的數(shù)量關系;
(2)如圖2,當P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關系?若存在,請寫出證明過程;若不存在,請說明理由;
(3)如圖3,∠MON=60°,連接AP,設=k,當P和Q兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,,點E在AD上,且,連接EC,將矩形ABCD沿直線BE翻折,點A恰好落在EC上的點A'處,則____________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E,點F是點E關于AB的對稱點,連接AF、BF
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設平移的距離為m(平移距離指點B沿BD方向所經(jīng)過的線段長度).當點F分別平移到線段AB、AD上時,直接寫出相應的m的值;
(3)如圖②,將△ABF繞點B順時針旋轉一個角α(0°<α<180°),記旋轉中的△ABF為△A′BF′,在旋轉過程中,設A′F′所在的直線與直線AD交于點P,與直線BD交于點Q.是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設PA=x.
(1)求證:△PFA∽△ABE;
(2)當點P在線段AD上運動時,設PA=x,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點E為AB中點.沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F.已知EF=cm, 則BC的長是_______________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分線交BC于E,連接DE.
(1)說明點D在△ABE的外接圓上;
(2)若∠AED=∠CED,試判斷直線CD與△ABE外接圓的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com