【題目】已知一元二次方程的一根為

關(guān)于的函數(shù)關(guān)系式;

求證:拋物線軸有兩個交點;

設(shè)拋物線軸交于、兩點(、不重合),且以為直徑的圓正好經(jīng)過該拋物線的頂點,求的值.

【答案】(1);(2)證明見解析;(3)

【解析】

(1)把x=2直接代入一元二次方程x2+px+q+1=0中即可得到q關(guān)于p的函數(shù)關(guān)系式;
(2)利用(1)的結(jié)論證明拋物線y=x2+px+q的判別式是正數(shù)就可以了;
(3)首先求出方程x2+px+q+1=0的兩根,然后用p表示AB的長度,表示拋物線頂點坐標,再利用以AB為直徑的圓正好經(jīng)過該拋物線的頂點可以得到關(guān)于p的方程,解方程即可求出p.

解:由題意得,即

證明:∵一元二次方程的判別式,

,

∴一元二次方程有兩個不相等的實根,

∴拋物線軸有兩個交點;

解:由題意,,

解此方程得,,

,

的頂點坐標是

為直徑的圓經(jīng)過頂點,

解得,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在直角中,,,ADCE分別是的平分線,ADCE相交于點F

的度數(shù);

判斷FEFD之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2bxc(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題.

(1)寫出方程ax2bxc0的兩個根;

(2)寫出不等式ax2bxc0的解集;

(3)寫出yx的增大而減小的自變量x的取值范圍;

(4)若方程ax2bxck有兩個不相等的實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊△ABC內(nèi)一點,且PA=6,PC=8,PB=10,若△APB繞點A逆時針旋轉(zhuǎn)60°后,得到△AP′C,則∠APC=_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習了利用圖象法來求一元二次方程的近似根的知識后進行了嘗試:在直角坐標系中作出二次函數(shù)的圖象,由圖象可知,方程有兩個根,一個在之間,另一個在之間.利用計算器進行探索:由下表知,方程的一個近似根是(

A. -4.1 B. -4.2 C. -4.3 D. -4.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)某賓館準備購進一批換氣扇,從電器商場了解到:一臺A型換氣扇和三臺B型換氣扇共需275元;三臺A型換氣扇和二臺B型換氣扇共需300元.

(1)求一臺A型換氣扇和一臺B型換氣扇的售價各是多少元;

(2)若該賓館準備同時購進這兩種型號的換氣扇共40臺并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知1號、4號兩個正方形的面積和為10, 2號、3號兩個正方形的面積和為7,則ab,c三個方形的面積和為( )

A. 17 B. 27 C. 24 D. 34

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車4S店銷售某種型號的汽車,每輛進貨價為15萬元,該店經(jīng)過一段時間的市場調(diào)研發(fā)現(xiàn):當銷售價為25萬元時,平均每周能售出8輛,而當銷售價每降低0.5萬元時,平均每周能多售出1輛.該4S店要想平均每周的銷售利潤為90萬元,并且使成本盡可能的低,則每輛汽車的定價應為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD和正方形CEFG的邊長分別為ab,正方形CEFG繞點C旋轉(zhuǎn),

1)猜想BEDG的關(guān)系,并證明你的結(jié)論;

2)用含ab的式子表示DE2+BG2

查看答案和解析>>

同步練習冊答案