【題目】如圖,點(diǎn)在⊙的直徑的延長(zhǎng)線上,點(diǎn)在⊙上, , .
(1)求證: 是⊙的切線;
(2)若⊙的半徑為,求圖中陰影部分的面積.
【答案】(1)證明見解析(2)
【解析】試題分析:(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;
(2)先根據(jù)直角三角形中30°的銳角所對(duì)的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.
(1)證明:連接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠2=∠A=30°.
∴∠OCD=∠ACD-∠2=90°,
即OC⊥CD,
∴CD是⊙O的切線;
(2)解:∠1=∠2+∠A=60°.
∴S扇形BOC==.
在Rt△OCD中,∠D=30°,
∴OD=2OC=4,
∴CD==.
∴SRt△OCD=OC×CD=×2×=.
∴圖中陰影部分的面積為: -.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是人字型金屬屋架的示意圖,該屋架由BC、AC、BA、AD四段金屬材料焊接而成,其中A、B、C、D四點(diǎn)均為焊接點(diǎn),且AB=AC,D為BC的中點(diǎn),假設(shè)焊接所需的四段金屬材料已截好,并已標(biāo)出BC段的中點(diǎn)D,那么,如果焊接工身邊只有可檢驗(yàn)直角的角尺,而又為了準(zhǔn)確快速地焊接,他應(yīng)該首先選取的兩段金屬材料及焊接點(diǎn)是( 。
A.AB和AD,點(diǎn)AB.AB和AC,點(diǎn)B
C.AC和BC, 點(diǎn)CD.AD和BC,點(diǎn)D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中有一點(diǎn).
(1)若點(diǎn)到軸的距離為2時(shí),求點(diǎn)的坐標(biāo);
(2)若點(diǎn)的坐標(biāo)是,當(dāng)軸時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,點(diǎn)為邊中點(diǎn),點(diǎn)為邊中點(diǎn);點(diǎn), 為邊三等分點(diǎn), , 為邊三等分點(diǎn).小瑞分別用不同的方式連接矩形對(duì)邊上的點(diǎn),如圖2,圖3所示.那么,圖2中四邊形的面積與圖3中四邊形的面積相等嗎?
(1)小瑞的探究過程如下
在圖2中,小瑞發(fā)現(xiàn), ;
在圖3中,小瑞對(duì)四邊形面積的探究如下. 請(qǐng)你將小瑞的思路填寫完整:
設(shè),
∵
∴,且相似比為,得到
∵
∴,且相似比為,得到
又∵,
∴
∴, ,
∴,則(填寫“”,“”或“”)
(2)小瑞又按照?qǐng)D4的方式連接矩形對(duì)邊上的點(diǎn).則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,垂直平分線段(),點(diǎn) 是線段 延長(zhǎng)線上的一點(diǎn),且,連接,過點(diǎn)作 于點(diǎn),交的延長(zhǎng)線與點(diǎn).
(1)若 ,則______(用的代數(shù)式表示);
(2)線段與線段相等嗎?為什么?
(3)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下表:
序號(hào) | 1 | 2 | 3 | … |
圖形 |
|
|
| … |
我們把某格中字母和所得到的多項(xiàng)式稱為“特征多項(xiàng)式”,例如第1格的“特征多項(xiàng)式”為.
回答下列問題:
(1)第3格的“特征多項(xiàng)式”為____________,
第4格的“特征多項(xiàng)式”為____________,
第格的“特征多項(xiàng)式”為____________;
(2)若第1格的“特征多項(xiàng)式”的值為10,第2格的“特征多項(xiàng)式”的值為19,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)1至2019按照一定規(guī)律排成下表:
記aij表示第i行第j個(gè)數(shù),如a14=4表示第1行第4個(gè)數(shù)是4.
(1)直接寫出a42= ,a53= ;
(2)①如果aij=2019,那么i= ,j= ;②用i,j表示aij= ;
(3)將表格中的5個(gè)陰影格子看成一個(gè)整體并平移,所覆蓋的5個(gè)數(shù)之和能否等于2027.若能,求出這5個(gè)數(shù)中的最小數(shù),若不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,AB表示A點(diǎn)和B點(diǎn)之間的距離,C是AB的中點(diǎn),且a、b滿足|a+3|+(b+3a)2=0.
(1)求點(diǎn)C表示的數(shù);
(2)點(diǎn)P從A點(diǎn)以3個(gè)單位每秒向右運(yùn)動(dòng),點(diǎn)Q同時(shí)從B點(diǎn)以2個(gè)單位每秒向左運(yùn)動(dòng),若AP+BQ=2PQ,求時(shí)間t;
(3)若點(diǎn)P從A向右運(yùn)動(dòng),點(diǎn)M為AP中點(diǎn),在P點(diǎn)到達(dá)點(diǎn)B之前:①的值不變;②2BM﹣BP的值不變,其中只有一個(gè)正確,請(qǐng)你找出正確的結(jié)論并求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中的點(diǎn)P和圖形G,給出如下的定義:若在圖形G上存在一點(diǎn)Q ,使得P、Q之間的距離等于1,則稱P為圖形G的關(guān)聯(lián)點(diǎn).
(1)當(dāng)⊙O的半徑為1時(shí):
①點(diǎn), , 中,⊙O的關(guān)聯(lián)點(diǎn)有_____________________.
②直線經(jīng)過(0,1)點(diǎn),且與軸垂直,點(diǎn)P在直線上.若P是⊙O的關(guān)聯(lián)點(diǎn),求點(diǎn)P的橫坐標(biāo)的取值范圍.
(2)已知正方形ABCD的邊長(zhǎng)為4,中心為原點(diǎn),正方形各邊都與坐標(biāo)軸垂直.若正方形各邊上的點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn),求圓的半徑的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com