【題目】如圖,點(diǎn)在⊙的直徑的延長(zhǎng)線上,點(diǎn)在⊙上,

1求證: 是⊙的切線;

2若⊙的半徑為,求圖中陰影部分的面積.

【答案】(1)證明見解析(2)

【解析】試題分析:(1)連接OC.只需證明∠OCD90°.根據(jù)等腰三角形的性質(zhì)即可證明;

2先根據(jù)直角三角形中30°的銳角所對(duì)的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.

1)證明:連接OC

ACCD,ACD120°,

∴∠AD30°

OAOC

∴∠2A30°

∴∠OCDACD∠290°,

OCCD,

CD是⊙O的切線;

2)解:∠1∠2A60°

S扇形BOC

Rt△OCD中,D30°

OD2OC4,

CD

SRtOCDOC×CD×2×

∴圖中陰影部分的面積為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是人字型金屬屋架的示意圖,該屋架由BCAC、BAAD四段金屬材料焊接而成,其中AB、CD四點(diǎn)均為焊接點(diǎn),且AB=AC,DBC的中點(diǎn),假設(shè)焊接所需的四段金屬材料已截好,并已標(biāo)出BC段的中點(diǎn)D,那么,如果焊接工身邊只有可檢驗(yàn)直角的角尺,而又為了準(zhǔn)確快速地焊接,他應(yīng)該首先選取的兩段金屬材料及焊接點(diǎn)是( 。

A.ABAD,點(diǎn)AB.ABAC,點(diǎn)B

C.ACBC, 點(diǎn)CD.ADBC,點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中有一點(diǎn).

1)若點(diǎn)軸的距離為2時(shí),求點(diǎn)的坐標(biāo);

2)若點(diǎn)的坐標(biāo)是,當(dāng)軸時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,點(diǎn)邊中點(diǎn),點(diǎn)邊中點(diǎn);點(diǎn) 邊三等分點(diǎn), , 邊三等分點(diǎn).小瑞分別用不同的方式連接矩形對(duì)邊上的點(diǎn),如圖2,圖3所示.那么,圖2中四邊形的面積與圖3中四邊形的面積相等嗎?

(1)小瑞的探究過程如下

在圖2中,小瑞發(fā)現(xiàn),

在圖3中,小瑞對(duì)四邊形面積的探究如下. 請(qǐng)你將小瑞的思路填寫完整:

設(shè),

,且相似比為,得到

,且相似比為,得到

又∵

, ,

,則(填寫“,”或“

(2)小瑞又按照?qǐng)D4的方式連接矩形對(duì)邊上的點(diǎn).則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,垂直平分線段),點(diǎn) 是線段 延長(zhǎng)線上的一點(diǎn),且,連接,過點(diǎn) 于點(diǎn),交的延長(zhǎng)線與點(diǎn).

1)若 ,則______(用的代數(shù)式表示);

2)線段與線段相等嗎?為什么?

3)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下表:

序號(hào)

1

2

3

圖形

我們把某格中字母和所得到的多項(xiàng)式稱為特征多項(xiàng)式,例如第1格的特征多項(xiàng)式.

回答下列問題:

1)第3格的特征多項(xiàng)式____________,

4格的特征多項(xiàng)式____________,

格的特征多項(xiàng)式____________;

2)若第1格的特征多項(xiàng)式的值為10,第2格的特征多項(xiàng)式的值為19,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù)12019按照一定規(guī)律排成下表:

aij表示第i行第j個(gè)數(shù),如a144表示第1行第4個(gè)數(shù)是4

1)直接寫出a42   ,a53   

2)①如果aij2019,那么i   ,j   ;②用i,j表示aij   ;

3)將表格中的5個(gè)陰影格子看成一個(gè)整體并平移,所覆蓋的5個(gè)數(shù)之和能否等于2027.若能,求出這5個(gè)數(shù)中的最小數(shù),若不能說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)bAB表示A點(diǎn)和B點(diǎn)之間的距離,CAB的中點(diǎn),且ab滿足|a+3|+b+3a2=0

1)求點(diǎn)C表示的數(shù);

2)點(diǎn)PA點(diǎn)以3個(gè)單位每秒向右運(yùn)動(dòng),點(diǎn)Q同時(shí)從B點(diǎn)以2個(gè)單位每秒向左運(yùn)動(dòng),若AP+BQ=2PQ,求時(shí)間t

3)若點(diǎn)PA向右運(yùn)動(dòng),點(diǎn)MAP中點(diǎn),在P點(diǎn)到達(dá)點(diǎn)B之前:的值不變;2BMBP的值不變,其中只有一個(gè)正確,請(qǐng)你找出正確的結(jié)論并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中的點(diǎn)P和圖形G給出如下的定義若在圖形G上存在一點(diǎn)Q ,使得PQ之間的距離等于1,則稱P為圖形G的關(guān)聯(lián)點(diǎn).

1當(dāng)O的半徑為1時(shí)

點(diǎn), , ,O的關(guān)聯(lián)點(diǎn)有_____________________

直線經(jīng)過0,1點(diǎn),且與軸垂直點(diǎn)P在直線上.若PO的關(guān)聯(lián)點(diǎn),求點(diǎn)P的橫坐標(biāo)的取值范圍.

2已知正方形ABCD的邊長(zhǎng)為4中心為原點(diǎn),正方形各邊都與坐標(biāo)軸垂直.若正方形各邊上的點(diǎn)都是某個(gè)圓的關(guān)聯(lián)點(diǎn)求圓的半徑的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案