【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF= BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長.
科目:初中數(shù)學 來源: 題型:
【題目】在我們認識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數(shù)不同對稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題:
(1)非等邊的等腰三角形有條對稱軸,非正方形的長方形有條對稱軸,等邊三角形有條對稱軸;
(2)觀察下列一組凸多邊形(實線畫出),它們的共同點是只有1條對稱軸,其中圖1﹣2和圖1﹣3都可以看作由圖1﹣1修改得到的,仿照類似的修改方式,請你在圖1﹣4和圖1﹣5中,分別修改圖1﹣2和圖1﹣3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形;
(3)小明希望構(gòu)造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,圖2中是他沒有完成的圖形,請用實線幫他補完整個圖形;
(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標出對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,直線EF分別與AB,CD交于點G,H,GM⊥EF,HN⊥EF,交AB于點N,∠1=50°.
(1)求∠2的度數(shù);
(2)試說明HN∥GM;
(3)∠HNG=°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A=∠D,試說明 AC∥DE 成立的理由.
(下面是彬彬同學進行的推理,請你將彬彬同學的推理過程補充完整.)
解:∵AB∥CD (已知)
∴∠A=(兩直線平行,內(nèi)錯角相等)
又∵∠A=∠D()
∴∠=∠(等量代換)
∴AC∥DE ()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當AB=3,BP=2PC,求QM的長;
(3)當BP=m,PC=n時,求AM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B兩點是直線AB與x軸的正半軸,y軸的正半軸的交點,且OA,OB的長分別是x2﹣14x+48=0的兩個根(OA>OB),射線BC平分∠ABO交x軸于C點,若有一動點P以每秒1個單位的速度從B點開始沿射線BC移動,運動時間為t秒.
(1)求OA,OB的長;
(2)設△APB和△OPB的面積分別為s1 , s2 , 求s1:s2;
(3)在點P的運動過程中,△OPB可能是等腰三角形嗎?若可能,直接寫出時間t;若不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面幾種三角形:
①有兩個角為60°的三角形;
②三個外角都相等的三角形;
③一條邊上的高也是這條邊上的中線的三角形;
④有一個角為60°的等腰三角形.
其中是等邊三角形的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com