精英家教網(wǎng)如圖,在等腰△ABC的兩腰AB、AC上分別取點E和F,使AE=CF.已知BC=2,求證:EF≥1.
分析:本例實際上就是證明2EF≥BC,不便直接證明,通過平移把BC與EF集中到同一個三角形中.
解答:精英家教網(wǎng)解:如圖.過E點作ED
.
BC,連CD、FD,
則四邊形EBCD為平行四邊形,BE=CD=AF,∠A=∠DCF,又AE=CF,
則△AEF≌△CFD,得EF=DF,
在△DEF中,DF+EF>ED,即2EF>BC=2,
所以EF>1.
特別地,當E、F分別為AB、AC的中點時,EF=1,
故EF≥1.
點評:本題考查了三角形三邊關系.
三角形中的不等關系,涉及到以下基本知識:
(1)兩點間線段最短,垂線段最短;
(2)三角形兩邊之和大于第三邊,兩邊之差小于第三邊;
(3)同一個三角形中大邊對大角(大角對大邊),三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,BE⊥AC,垂足為E,則∠1與∠A的關系式為( 。
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,AB的垂直平分線DE交AB于點D,交另一腰AC于點E,若∠EBC=15°,則∠A=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,在等腰△ABC中,AB=AC,∠ABC=α,在四邊形BDEC中,DB=DE,∠BDE=2α,M為CE的中點,連接AM,DM.
(1)在圖中畫出△DEM關于點M成中心對稱的圖形;
(2)求證AM⊥DM;
(3)當α=
45°
,AM=DM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•麗水)如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是
50°
50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點.若BC=8cm,則△BCE的周長是
18
18
cm.

查看答案和解析>>

同步練習冊答案