【題目】甲、乙、丙、丁四位同學(xué)五次100米跑成績(jī)統(tǒng)計(jì)如下表.如果從這四位同學(xué)中,選出一位成績(jī)較好且狀態(tài)穩(wěn)定的同學(xué)參加縣運(yùn)動(dòng)會(huì),那么應(yīng)選( )

平均數(shù)(秒)

16

15

15

16

方差

30

30

35

42

A. B. C. D.

【答案】B

【解析】

方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.

∵乙同學(xué)的平均用時(shí)最短,方差最小,最穩(wěn)定,

∴應(yīng)選乙同學(xué).

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(m﹣n)2=34,(m+n)2=4 000,則m2+n2的值為(
A.2 016
B.2 017
C.2 018
D.4 034

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形的兩邊長(zhǎng)分別為36,則這個(gè)等腰三角形的周長(zhǎng)為( )

A. 12 B. 15 C. 1215 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在矩形ABCD中,O為AC的中點(diǎn),直線l經(jīng)過(guò)點(diǎn)B,且直線l繞著點(diǎn)B旋轉(zhuǎn),AMl于點(diǎn)M,CNl于點(diǎn)N,連接OM,ON

(1)當(dāng)直線l經(jīng)過(guò)點(diǎn)D時(shí),如圖1,則OM、ON的數(shù)量關(guān)系為 ;

(2)當(dāng)直線l與線段CD交于點(diǎn)F時(shí),如圖2(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由;

(3)當(dāng)直線l與線段DC的延長(zhǎng)線交于點(diǎn)P時(shí),請(qǐng)?jiān)趫D3中作出符合條件的圖形,并判斷(1)中的結(jié)論是否仍然成立?不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)P(x,y)在第四象限,且|x|=2,|y|=3,則x+y=(  )

A. ﹣1 B. 1 C. 5 D. ﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x2+mxy+y2是一個(gè)完全平方式,則m=( 。

A. 2 B. 1 C. ±1 D. ±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列式計(jì)算

(1)-個(gè)數(shù)與-5的差為-8,求這個(gè)數(shù);

(2)-個(gè)數(shù)與9的差為-5,求這個(gè)數(shù).

(3)溫度由-9℃上升了3℃后的溫度是多少?

(4)甲地的海拔是-63米,乙地比甲地高24米,則乙地的海拔為多少?

(5)土星表面夜間的平均氣溫為-150℃,白天的平均氣溫比夜間高27℃,那么白天的平均氣溫是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)為了解觀眾對(duì)“跑男”綜藝節(jié)目的喜愛(ài)情況,隨機(jī)抽取某社區(qū)部分觀眾,進(jìn)行問(wèn)卷調(diào)查,整理繪制了如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)求被調(diào)查的男觀眾中,表示“不喜歡”的男觀眾所占的百分比是多少?

(2)求這次調(diào)查的女觀眾人數(shù),并直接補(bǔ)全條形統(tǒng)計(jì)圖.

(3)在扇形統(tǒng)計(jì)圖中,“一般”所對(duì)應(yīng)的圓心角為 度.

(4)若該社區(qū)有女觀眾約1000人,估計(jì)該社區(qū)女觀眾喜歡看“跑男”綜藝節(jié)目的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,CD是⊙O的切線,切點(diǎn)為D,CD與AB的延長(zhǎng)線相交于點(diǎn)E,∠ADC=60°.

(1)求證:△ADE是等腰三角形;

(2)若AD=2,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案